IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i8p2895-2912.html
   My bibliography  Save this article

Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm

Author

Listed:
  • Mohammad Kazemzadeh-Parsi

    ()

  • Farhang Daneshmand

    ()

  • Mohammad Ahmadfard
  • Jan Adamowski

Abstract

Remediation of contaminated sites requires an optimal decision making system to develop remediation techniques in a cost-effective and efficient manner. A coupled simulation–optimization solution approach, based on the finite element method (FEM) and a modified firefly algorithm (MFA), is developed in this study for optimal contaminated groundwater remediation design. A new modified firefly optimization algorithm is proposed by modifying the traditional firefly algorithm in three ways: (i) adding memory, (ii) preventing premature convergence to local optima and thus accelerating the optimization process, and (iii) proposing a new updating formula. Modifications performed in the present study improved the applicability and efficiency of the traditional metaheuristic firefly optimization algorithm, and led the MFA to outperform both its predecessor and conventional optimization methods (e.g., genetic algorithm). A hypothetical, unconfined contaminated field is considered and remediated by considering pump and treat and flushing methods. Pumping rates are considered as design variables while the number of pumps and pump locations, as well as the pumping period, are initially assumed. The coupled simulation-optimization model (FEM-MFA) proposed in this study constitutes an effective way to determine an optimal remediation design for a contaminated aquifer. The results of the present investigation will contribute to improve groundwater management in contaminated aquifers. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Mohammad Kazemzadeh-Parsi & Farhang Daneshmand & Mohammad Ahmadfard & Jan Adamowski, 2015. "Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2895-2912, June.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2895-2912
    DOI: 10.1007/s11269-015-0976-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0976-0
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hone-Jay Chu & Liang-Cheng Chang, 2009. "Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 647-660, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Partha Majumder & T. I. Eldho, 2016. "A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1953-1972, April.
    2. Sina Sadeghfam & Yousef Hassanzadeh & Rahman Khatibi & Ata Allah Nadiri & Marjan Moazamnia, 2019. "Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1123-1145, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2895-2912. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.