IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i4d10.1007_s10898-024-01458-1.html
   My bibliography  Save this article

On the convergence order of value function relaxations used in decomposition-based global optimization of nonconvex stochastic programs

Author

Listed:
  • Dillard Robertson

    (Georgia Institute of Technology)

  • Pengfei Cheng

    (Georgia Institute of Technology)

  • Joseph K. Scott

    (Georgia Institute of Technology)

Abstract

This paper analyzes the convergence rate of decomposition algorithms for globally solving nonconvex stochastic programming problems. We focus on two recent algorithms, termed CZ (Cao and Zavala in J Glob Optim 75:393–416, 2019) and LG (Li and Grossmann in J Glob Optim 75:247–272, 2019), that guarantee global optimality while achieving a favorable decomposed scaling with respect to the number of scenarios. Both methods project the problem into the space of first-stage decisions and apply a spatial-B&B search in this reduced space. Consequently, we observe that they are subject to the results of prior studies on the efficiency of general spatial-B&B algorithms. Such studies have concluded that, to avoid very slow convergence due to the cluster problem, it is necessary (but not sufficient) for the B&B lower bounding problems to have a sufficiently high Hausdorff convergence order. We apply this concept to the CZ and LG decomposition algorithms by first arguing that their lower bounding procedures can be interpreted as defining relaxations in the reduced space of first-stage decisions, and then analyzing the Hausdorff convergence of these relaxations in detail. The results are found to depend strongly on the regularity of the recourse optimal value functions. The relaxations used by CZ are found to be first-order convergent or less, while second order is generally necessary to avoid clustering. In contrast, the relaxations used by LG achieve the highest order possible within the decomposition framework we consider, which is second order when the value functions are smooth, but first order or less otherwise. Unfortunately, these functions are only guaranteed to be lower semi-continuous under standard assumptions. This alludes to a larger limitation of the projection-based decomposition approach, which is discussed at length.

Suggested Citation

  • Dillard Robertson & Pengfei Cheng & Joseph K. Scott, 2025. "On the convergence order of value function relaxations used in decomposition-based global optimization of nonconvex stochastic programs," Journal of Global Optimization, Springer, vol. 91(4), pages 701-742, April.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01458-1
    DOI: 10.1007/s10898-024-01458-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01458-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01458-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    2. Şafak, Özge & Çavuş, Özlem & Selim Aktürk, M., 2018. "Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 39-67.
    3. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    4. Agustín Bompadre & Alexander Mitsos, 2012. "Convergence rate of McCormick relaxations," Journal of Global Optimization, Springer, vol. 52(1), pages 1-28, January.
    5. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    6. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    7. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    2. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    3. Junlong Zhang & Osman Y. Özaltın & Andrew C. Trapp, 2025. "Solving a class of two-stage stochastic nonlinear integer programs using value functions," Journal of Global Optimization, Springer, vol. 91(1), pages 129-153, January.
    4. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    5. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    6. Jai Rajyaguru & Mario E. Villanueva & Boris Houska & Benoît Chachuat, 2017. "Chebyshev model arithmetic for factorable functions," Journal of Global Optimization, Springer, vol. 68(2), pages 413-438, June.
    7. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    8. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    9. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    10. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    11. Miten Mistry & Dimitrios Letsios & Gerhard Krennrich & Robert M. Lee & Ruth Misener, 2021. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1103-1119, July.
    12. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    13. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    14. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    15. Marendet, Antoine & Goldsztejn, Alexandre & Chabert, Gilles & Jermann, Christophe, 2020. "A standard branch-and-bound approach for nonlinear semi-infinite problems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 438-452.
    16. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    17. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    18. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    19. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    20. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01458-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.