IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i4d10.1007_s10898-025-01489-2.html
   My bibliography  Save this article

MUSE-BB: a decomposition algorithm for nonconvex two-stage problems using strong multisection branching

Author

Listed:
  • Marco Langiu

    (RWTH Aachen University
    Forschungszentrum Jülich GmbH)

  • Manuel Dahmen

    (Forschungszentrum Jülich GmbH)

  • Dominik Bongartz

    (KU Leuven)

  • Alexander Mitsos

    (RWTH Aachen University
    Forschungszentrum Jülich GmbH
    JARA-ENERGY)

Abstract

We present MUSE-BB, a branch-and-bound (B&B) based decomposition algorithm for the deterministic global solution of nonconvex two-stage stochastic programming problems. In contrast to three recent decomposition algorithms, which solve this type of problem in a projected form by nesting an inner B&B in an outer B&B on the first-stage variables, we branch on all variables within a single B&B tree. This results in a higher convergence order of the lower bounding scheme, avoids repeated consideration of subdomains, inherent to the nesting of B&B searches, and enables the use of cheaper subproblems. In particular, when branching on second-stage variables, we employ a multisection variant of strong-branching, in which we simultaneously consider one candidate variable from each scenario for branching. By our decomposable lower bounding scheme, the resulting subproblems are independent and can be solved in parallel. We then use strong-branching scores to filter less promising candidate variables and only generate child nodes corresponding to a multisection involving the remaining variables by combining the appropriate subproblem results. We prove finite $$\varepsilon _f$$ ε f -convergence, and demonstrate that the lower-bounding scheme of MUSE-BB has at least first-order convergence under the mild assumption of Lipschitz continuous functions and relaxations. MUSE-BB is implemented and made available open source, as an extension of our deterministic global solver for mixed-integer nonlinear programs, MAiNGO, with OpenMP-parallelization of the decomposable subroutines. Numerical results show that MUSE-BB requires less CPU time than solving the deterministic equivalent using the standard version of MAiNGO; moreover, the parallelized decomposition allows for further reduction in wall time.

Suggested Citation

  • Marco Langiu & Manuel Dahmen & Dominik Bongartz & Alexander Mitsos, 2025. "MUSE-BB: a decomposition algorithm for nonconvex two-stage problems using strong multisection branching," Journal of Global Optimization, Springer, vol. 92(4), pages 837-888, August.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:4:d:10.1007_s10898-025-01489-2
    DOI: 10.1007/s10898-025-01489-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01489-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01489-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    2. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    3. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    4. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    5. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    6. Dillard Robertson & Pengfei Cheng & Joseph K. Scott, 2025. "On the convergence order of value function relaxations used in decomposition-based global optimization of nonconvex stochastic programs," Journal of Global Optimization, Springer, vol. 91(4), pages 701-742, April.
    7. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    8. M. Dür & R. Horst, 1997. "Lagrange Duality and Partitioning Techniques in Nonconvex Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 347-369, November.
    9. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    10. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    11. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    12. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    13. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    14. Yankai Cao & Victor M. Zavala, 2019. "A scalable global optimization algorithm for stochastic nonlinear programs," Journal of Global Optimization, Springer, vol. 75(2), pages 393-416, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    2. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    3. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    4. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    5. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    6. Dillard Robertson & Pengfei Cheng & Joseph K. Scott, 2025. "On the convergence order of value function relaxations used in decomposition-based global optimization of nonconvex stochastic programs," Journal of Global Optimization, Springer, vol. 91(4), pages 701-742, April.
    7. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    8. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    9. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    10. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    11. Junlong Zhang & Osman Y. Özaltın & Andrew C. Trapp, 2025. "Solving a class of two-stage stochastic nonlinear integer programs using value functions," Journal of Global Optimization, Springer, vol. 91(1), pages 129-153, January.
    12. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    13. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    14. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    15. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    16. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    17. Marendet, Antoine & Goldsztejn, Alexandre & Chabert, Gilles & Jermann, Christophe, 2020. "A standard branch-and-bound approach for nonlinear semi-infinite problems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 438-452.
    18. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    19. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    20. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:4:d:10.1007_s10898-025-01489-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.