IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i4p647-660.html
   My bibliography  Save this article

Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design

Author

Listed:
  • Hone-Jay Chu

    ()

  • Liang-Cheng Chang

    ()

Abstract

Obtaining optimal solutions for time-varying groundwater remediation design is a challenging task. A novel procedure first employs input/output data sets obtained by constrained differential dynamic programming (CDDP). Then the Adaptive-Network-Based Fuzzy Inference System (ANFIS), which is a fuzzy inference system (FIS) implemented in the adaptive network framework, is applied to acquire time-varying pumping rates. Results demonstrate that the FIS is an efficient way of groundwater remediation design. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Hone-Jay Chu & Liang-Cheng Chang, 2009. "Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 647-660, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:647-660
    DOI: 10.1007/s11269-008-9293-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9293-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Rao & B. Thandaveswara & S. Murty Bhallamudi & V. Srinivasulu, 2003. "Optimal Groundwater Management in Deltaic Regions using Simulated Annealing and Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(6), pages 409-428, December.
    2. S. Rao & S. Bhallamudi & B. Thandaveswara & V. Sreenivasulu, 2005. "Planning Groundwater Development in Coastal Deltas with Paleo Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 625-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Yang & G. Huang & X. Qin, 2010. "An Integrated Simulation-Assessment Approach for Evaluating Health Risks of Groundwater Contamination Under Multiple Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3349-3369, October.
    2. Muhammet Emiroglu & Ozgur Kisi, 2013. "Prediction of Discharge Coefficient for Trapezoidal Labyrinth Side Weir Using a Neuro-Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1473-1488, March.
    3. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    4. Mohammad Kazemzadeh-Parsi & Farhang Daneshmand & Mohammad Ahmadfard & Jan Adamowski, 2015. "Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2895-2912, June.
    5. Bagher Shirmohammadi & Mehdi Vafakhah & Vahid Moosavi & Alireza Moghaddamnia, 2013. "Application of Several Data-Driven Techniques for Predicting Groundwater Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 419-432, January.
    6. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    7. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    8. Onur Genç & Özgür Kişi & Mehmet Ardıçlıoğlu, 2014. "Determination of Mean Velocity and Discharge in Natural Streams Using Neuro-Fuzzy and Neural Network Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2387-2400, July.
    9. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    10. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    11. Seyed Akrami & Ahmed El-Shafie & Othman Jaafar, 2013. "Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3507-3523, July.

    More about this item

    Keywords

    CDDP; ANFIS; Remediation design; Ground water;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:647-660. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.