IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i13p4765-4779.html
   My bibliography  Save this article

Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers

Author

Listed:
  • Isa Ebtehaj
  • Hossein Bonakdari

    ()

Abstract

The application of models capable of estimating sediment transport in sewers has been a frequent practice in the past years. Considering the fact that predicting sediment transport within the sewer is a complex phenomenon, the existing equations used for predicting densimetric Froude number do not present similar results. Using Adaptive Neural Fuzzy Inference System (ANFIS) this article studies sediment transport in sewers. For this purpose, five different dimensionless groups including motion, transport, sediment, transport mode and flow resistance are introduced first and then the effects of various parameters in different groups on the estimation of the densimetric Froude number in the motion group are presented as six different models. To present the models, two states of grid partitioning and sub-clustering were used in Fuzzy Inference System (FIS) generation. Moreover, the training algorithms applied in this article include back propagation and hybrid. The results of the proposed models are compared with the experimental data and the existing equations. The results show that ANFIS models have greater accuracy than the existing sediment transport equations. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4765-4779
    DOI: 10.1007/s11269-014-0774-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0774-0
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozgur Kisi & Mohammad Zounemat-Kermani, 2014. "Comparison of Two Different Adaptive Neuro-Fuzzy Inference Systems in Modelling Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2655-2675, July.
    2. Hone-Jay Chu & Liang-Cheng Chang, 2009. "Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 647-660, March.
    3. Vasileios Kitsikoudis & Epaminondas Sidiropoulos & Vlassios Hrissanthou, 2014. "Machine Learning Utilization for Bed Load Transport in Gravel-Bed Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3727-3743, September.
    4. Rama Mehta & Sharad Jain, 2009. "Optimal Operation of a Multi-Purpose Reservoir Using Neuro-Fuzzy Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 509-529, February.
    5. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    6. Yang, Zhiling & Liu, Yongqian & Li, Chengrong, 2011. "Interpolation of missing wind data based on ANFIS," Renewable Energy, Elsevier, vol. 36(3), pages 993-998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Sharafi & Isa Ebtehaj & Hossein Bonakdari & Amir Hossein Zaji, 2016. "Design of a support vector machine with different kernel functions to predict scour depth around bridge piers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2145-2162, December.
    2. Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
    3. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    4. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    5. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    6. Hamid Moeeni & Hossein Bonakdari & Isa Ebtehaj, 2017. "Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2141-2156, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4765-4779. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.