IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i7d10.1007_s11269-018-1915-7.html
   My bibliography  Save this article

Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation

Author

Listed:
  • Zaher Mundher Yaseen

    (Ton Duc Thang University)

  • Majeed Mattar Ramal

    (University of Anbar)

  • Lamine Diop

    (Université Gaston Berger (UGB) BP 234-Saint Louis
    The Ohio State University)

  • Othman Jaafar

    (National University of Malaysia)

  • Vahdettin Demir

    (Karatay University)

  • Ozgur Kisi

    (Ilia State University)

Abstract

Soft computing models are known as an efficient tool for modelling temporal and spatial variation of surface water quality variables and particularly in rivers. These model’s performance relies on how effective their simulation processes are accomplished. Fuzzy logic approach is one of the authoritative intelligent model in solving complex problems that deal with uncertainty and vagueness data. River water quality nature is involved with high stochasticity and redundancy due to the its correlation with several hydrological and environmental aspects. Yet, the fuzzy logic theory can give robust solution for modelling river water quality problem. In addition, this approach likewise can be coordinated with an expert system framework for giving reliable and trustful information for decision makers in enhancing river system sustainability and factual strategies. In this research, different hybrid intelligence models based on adaptive neuro-fuzzy inference system (ANFIS) integrated with fuzzy c-means data clustering (FCM), grid partition (GP) and subtractive clustering (SC) models are used in modelling river water quality index (WQI). Monthly measurement records belong to Selangor River located in Malaysia were selected to build the predictive models. The modelling process was included several water quality terms counting physical, chemical and biological variables whereas WQI was the target variable. At the first stage of the research, statistical analysis for each water quality parameter was analyzed toward the WQI. Whereas in the second stage, the predictive models were established. The finding of the current research provides an authorized soft computing model to determine WQI that can be used instead of the conventional procedure that consumes time, cost, efforts and sometimes computation errors.

Suggested Citation

  • Zaher Mundher Yaseen & Majeed Mattar Ramal & Lamine Diop & Othman Jaafar & Vahdettin Demir & Ozgur Kisi, 2018. "Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2227-2245, May.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1915-7
    DOI: 10.1007/s11269-018-1915-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1915-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1915-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    2. Ozgur Kisi & Mohammad Zounemat-Kermani, 2014. "Comparison of Two Different Adaptive Neuro-Fuzzy Inference Systems in Modelling Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2655-2675, July.
    3. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    4. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    2. Qingqing Zhang & Xue-yi You, 2024. "Recent Advances in Surface Water Quality Prediction Using Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 235-250, January.
    3. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    4. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    5. Hye-Suk Yi & Sangyoung Park & Kwang-Guk An & Keun-Chang Kwak, 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea," IJERPH, MDPI, vol. 15(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    4. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    5. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Streamflow Forecasting Using Four Wavelet Transformation Combinations Approaches with Data-Driven Models: A Comparative Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4661-4679, November.
    6. Bhuvanamitra Sulugodu & Paresh Chandra Deka, 2019. "Evaluating the Performance of CHIRPS Satellite Rainfall Data for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3913-3927, September.
    7. Saeid Mehdizadeh & Ali Kozekalani Sales, 2018. "A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3001-3022, July.
    8. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    9. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    10. Zahra Dashti & Mohammad Nakhaei & Meysam Vadiati & Gholam Hossein Karami & Ozgur Kisi, 2023. "Estimation of Unconfined Aquifer Transmissivity Using a Comparative Study of Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4909-4931, September.
    11. Mustafa Erkan Turan, 2016. "Fuzzy Systems Tuned By Swarm Based Optimization Algorithms for Predicting Stream flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4345-4362, September.
    12. Changsam Jeong & Ju-Young Shin & Taesoon Kim & Jun-Haneg Heo, 2012. "Monthly Precipitation Forecasting with a Neuro-Fuzzy Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4467-4483, December.
    13. Erdem Küçüktopcu & Emirhan Cemek & Bilal Cemek & Halis Simsek, 2023. "Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    14. S. Aggarwal & Arun Goel & Vijay Singh, 2012. "Stage and Discharge Forecasting by SVM and ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3705-3724, October.
    15. Akram Rahbar & Ali Mirarabi & Mohammad Nakhaei & Mahdi Talkhabi & Maryam Jamali, 2022. "A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 589-609, January.
    16. Miao Zhang & Bo Su & Majid Nazeer & Muhammad Bilal & Pengcheng Qi & Ge Han, 2020. "Climatic Characteristics and Modeling Evaluation of Pan Evapotranspiration over Henan Province, China," Land, MDPI, vol. 9(7), pages 1-14, July.
    17. Mohammed Falah Allawi & Ahmed El-Shafie, 2016. "Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4773-4788, October.
    18. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    19. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    20. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1915-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.