IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i3p977-992.html
   My bibliography  Save this article

A general purpose exact solution method for mixed integer concave minimization problems

Author

Listed:
  • Sinha, Ankur
  • Das, Arka
  • Anand, Guneshwar
  • Jayaswal, Sachin

Abstract

In this article, we discuss an exact algorithm for solving mixed integer concave minimization problems. A piecewise inner-approximation of the concave function is achieved using an auxiliary linear program that leads to a bilevel program, which provides a lower bound to the original problem. The bilevel program is reduced to a single level formulation with the help of Karush–Kuhn–Tucker (KKT) conditions. Incorporating the KKT conditions lead to complementary slackness conditions that are linearized using BigM, for which we identify a tight value for general problems. Multiple bilevel programs, when solved over iterations, guarantee convergence to the exact optimum of the original problem. Though the algorithm is general and can be applied to any optimization problem with concave function(s), in this paper, we solve two common classes of operations and supply chain problems; namely, the concave knapsack problem, and the concave production-transportation problem. The computational experiments indicate that our proposed approach outperforms the customized methods that have been used in the literature to solve the two classes of problems by an order of magnitude in most of the test cases.

Suggested Citation

  • Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:977-992
    DOI: 10.1016/j.ejor.2023.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723001212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharp, J Frank & Snyder, James C & Greene, James H, 1970. "A Decomposition Algorithm for Solving the Multifacility Production-Transportation Problem with Nonlinear Production Costs," Econometrica, Econometric Society, vol. 38(3), pages 490-506, May.
    2. Harold P. Benson, 1985. "A finite algorithm for concave minimization over a polyhedron," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(1), pages 165-177, February.
    3. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    4. Katta G. Murty, 1968. "Solving the Fixed Charge Problem by Ranking the Extreme Points," Operations Research, INFORMS, vol. 16(2), pages 268-279, April.
    5. Wu, Zhengtian & Gao, Qing & Jiang, Baoping & Karimi, Hamid Reza, 2021. "Solving the production transportation problem via a deterministic annealing neural network method," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Bretthauer, Kurt M. & Ross, Anthony & Shetty, Bala, 1999. "Nonlinear integer programming for optimal allocation in stratified sampling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 667-680, August.
    7. James E. Falk & Karla R. Hoffman, 1976. "A Successive Underestimation Method for Concave Minimization Problems," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 251-259, August.
    8. Richard M. Soland, 1971. "An Algorithm for Separable Nonconvex Programming Problems II: Nonconvex Constraints," Management Science, INFORMS, vol. 17(11), pages 759-773, July.
    9. Wenjun Ni & Jia Shu & Miao Song & Dachuan Xu & Kaike Zhang, 2021. "A Branch-and-Price Algorithm for Facility Location with General Facility Cost Functions," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 86-104, January.
    10. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    11. Peter J. Kolesar, 1967. "A Branch and Bound Algorithm for the Knapsack Problem," Management Science, INFORMS, vol. 13(9), pages 723-735, May.
    12. Philip B. Zwart, 1974. "Global Maximization of a Convex Function with Linear Inequality Constraints," Operations Research, INFORMS, vol. 22(3), pages 602-609, June.
    13. Max Shen, Zuo-Jun & Qi, Lian, 2007. "Incorporating inventory and routing costs in strategic location models," European Journal of Operational Research, Elsevier, vol. 179(2), pages 372-389, June.
    14. Kurt M. Bretthauer & Bala Shetty, 1995. "The Nonlinear Resource Allocation Problem," Operations Research, INFORMS, vol. 43(4), pages 670-683, August.
    15. Dijkhuizen, G. & Faigle, U., 1993. "A cutting-plane approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 69(1), pages 121-130, August.
    16. Gabriel R. Bitran & Devanath Tirupati, 1989. "Tradeoff Curves, Targeting and Balancing in Manufacturing Queueing Networks," Operations Research, INFORMS, vol. 37(4), pages 547-564, August.
    17. Reza Zanjirani Farahani & Hannaneh Rashidi Bajgan & Behnam Fahimnia & Mohamadreza Kaviani, 2015. "Location-inventory problem in supply chains: a modelling review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(12), pages 3769-3788, June.
    18. Gallo, Giorgio & Sandi, Claudio & Sodini, Claudio, 1980. "An algorithm for the min concave cost flow problem," European Journal of Operational Research, Elsevier, vol. 4(4), pages 248-255, April.
    19. Kurt M. Bretthauer & A. Victor Cabot & M. A. Venkataramanan, 1994. "An algorithm and new penalties for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 435-454, April.
    20. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    21. Vishv Jeet & Erhan Kutanoglu & Amit Partani, 2009. "Logistics network design with inventory stocking for low-demand parts: Modeling and optimization," IISE Transactions, Taylor & Francis Journals, vol. 41(5), pages 389-407.
    22. Hamdy A. Taha, 1973. "Concave minimization over a convex polyhedron," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 533-548, September.
    23. Richard M. Soland, 1974. "Optimal Facility Location with Concave Costs," Operations Research, INFORMS, vol. 22(2), pages 373-382, April.
    24. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    25. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    26. Strekalovsky, Alexander S., 2015. "On local search in d.c. optimization problems," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 73-83.
    27. A. Victor Cabot & S. Selcuk Erenguc, 1986. "A branch and bound algorithm for solving a class of nonlinear integer programming problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(4), pages 559-567, November.
    28. Park, Kyungchul & Lee, Kyungsik & Park, Sungsoo, 1996. "An extended formulation approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 671-682, December.
    29. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems (revised as on 12/08/2021)," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.
    4. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    5. Kurt M. Bretthauer, 1994. "A penalty for concave minimization derived from the tuy cutting plane," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 455-463, April.
    6. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    7. Ross, Anthony & Khajehnezhad, Milad & Otieno, Wilkistar & Aydas, Osman, 2017. "Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multi-echelon formulation," European Journal of Operational Research, Elsevier, vol. 259(2), pages 664-676.
    8. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    9. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    10. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    11. Harold P. Benson, 2004. "Concave envelopes of monomial functions over rectangles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 467-476, June.
    12. Nonas, Sigrid Lise & Thorstenson, Anders, 2000. "A combined cutting-stock and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 327-342, January.
    13. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    14. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    15. Macambira, Elder Magalhaes & de Souza, Cid Carvalho, 2000. "The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations," European Journal of Operational Research, Elsevier, vol. 123(2), pages 346-371, June.
    16. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    17. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.
    18. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    19. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    20. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:977-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.