IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i3d10.1007_s10898-016-0490-9.html
   My bibliography  Save this article

An approximate bundle method for solving nonsmooth equilibrium problems

Author

Listed:
  • Fan-Yun Meng

    (Dalian University of Technology)

  • Li-Ping Pang

    (Dalian University of Technology)

  • Jian Lv

    (Dalian University of Technology)

  • Jin-He Wang

    (Qingdao Technological University)

Abstract

We present an approximate bundle method for solving nonsmooth equilibrium problems. An inexact cutting-plane linearization of the objective function is established at each iteration, which is actually an approximation produced by an oracle that gives inaccurate values for the functions and subgradients. The errors in function and subgradient evaluations are bounded and they need not vanish in the limit. A descent criterion adapting the setting of inexact oracles is put forward to measure the current descent behavior. The sequence generated by the algorithm converges to the approximately critical points of the equilibrium problem under proper assumptions. As a special illustration, the proposed algorithm is utilized to solve generalized variational inequality problems. The numerical experiments show that the algorithm is effective in solving nonsmooth equilibrium problems.

Suggested Citation

  • Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0490-9
    DOI: 10.1007/s10898-016-0490-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0490-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0490-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
    2. Minglu Ye & Yiran He, 2015. "A double projection method for solving variational inequalities without monotonicity," Computational Optimization and Applications, Springer, vol. 60(1), pages 141-150, January.
    3. Yang Yang & Liping Pang & Xuefei Ma & Jie Shen, 2014. "Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 900-925, December.
    4. Giancarlo Bigi & Massimo Pappalardo & Mauro Passacantando, 2016. "Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 887-905, December.
    5. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    6. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    7. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    8. Grégory Emiel & Claudia Sagastizábal, 2010. "Incremental-like bundle methods with application to energy planning," Computational Optimization and Applications, Springer, vol. 46(2), pages 305-332, June.
    9. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Ping Pang & Fan-Yun Meng & Jian-Song Yang, 2023. "A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems," Journal of Global Optimization, Springer, vol. 85(4), pages 891-915, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    2. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    3. Li-Ping Pang & Fan-Yun Meng & Jian-Song Yang, 2023. "A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems," Journal of Global Optimization, Springer, vol. 85(4), pages 891-915, April.
    4. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    5. Tang, Chunming & Liu, Shuai & Jian, Jinbao & Ou, Xiaomei, 2020. "A multi-step doubly stabilized bundle method for nonsmooth convex optimization," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    6. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    7. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    8. Najmeh Hoseini Monjezi & S. Nobakhtian, 2019. "A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 74(2), pages 443-480, November.
    9. Najmeh Hoseini Monjezi & S. Nobakhtian, 2021. "A filter proximal bundle method for nonsmooth nonconvex constrained optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 1-37, January.
    10. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    11. Xiaomei Dong & Xingju Cai & Deren Han & Zhili Ge, 2020. "Solving a Class of Variational Inequality Problems with a New Inexact Strategy," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-20, January.
    12. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    13. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    14. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    15. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    16. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    17. Jie Shen & Ya-Li Gao & Fang-Fang Guo & Rui Zhao, 2018. "A Redistributed Bundle Algorithm for Generalized Variational Inequality Problems in Hilbert Spaces," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-18, August.
    18. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    19. Cholamjiak, Watcharaporn & Dutta, Hemen & Yambangwai, Damrongsak, 2021. "Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0490-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.