IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i8p3127-3144.html
   My bibliography  Save this article

Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application

Author

Listed:
  • Prashant Srivastava
  • Dawei Han
  • Miguel Ramirez
  • Tanvir Islam

Abstract

Many hydrologic phenomena and applications such as drought, flood, irrigation management and scheduling needs high resolution satellite soil moisture data at a local/regional scale. Downscaling is a very important process to convert a coarse domain satellite data to a finer spatial resolution. Three artificial intelligence techniques along with the generalized linear model (GLM) are used to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) derived soil moisture, which is currently available at a very coarse scale of ~40 Km. Artificial neural network (ANN), support vector machine, relevance vector machine and generalized linear models are chosen for this study to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) with the SMOS derived soil moisture. Soil moisture deficit (SMD) derived from a hydrological model called PDM (Probability Distribution Model) is used for the downscaling performance evaluation. The statistical evaluation has also been made with the day-time and night-time MODIS LST differences with the mean day and night-time PDM SMD data for the selection of effective MODIS products. The accuracy and robustness of all the downscaling algorithms are discussed in terms of their assumptions and applicability. The statistical performance indices such as R 2 , %Bias and RMSE indicates that the ANN (R 2 = 0.751, %Bias = −0.628 and RMSE = 0.011), RVM (R 2 = 0.691, %Bias = 1.009 and RMSE = 0.013), SVM (R 2 = 0.698, %Bias = 2.370 and RMSE = 0.013) and GLM (R 2 = 0.698, %Bias = 1.009 and RMSE = 0.013) algorithms on the whole are relatively more skillful to downscale the variability of the soil moisture in comparison to the non-downscaled data (R 2 = 0.418 and RMSE = 0.017) with the outperformance of ANN algorithm. The other attempts related to growing and non-growing seasons have been used in this study to reveal that season based downscaling is even better than continuous time series with fairly high performance statistics. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Prashant Srivastava & Dawei Han & Miguel Ramirez & Tanvir Islam, 2013. "Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3127-3144, June.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3127-3144
    DOI: 10.1007/s11269-013-0337-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0337-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0337-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    2. Asnor Ishak & Renji Remesan & Prashant Srivastava & Tanvir Islam & Dawei Han, 2013. "Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 1-23, January.
    3. Chandrasekaran Sivapragasam & Nitin Muttil, 2005. "Discharge Rating Curve Extension – A New Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 505-520, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xumin Zhang & Simin Qu & Jijie Shen & Yingbing Chen & Xiaoqiang Yang & Peng Jiang & Peng Shi, 2023. "Effect of Distinct Evaluation Objectives on Different Precipitation Downscaling Methods and the Corresponding Potential Impacts on Catchment Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1913-1930, March.
    2. Prashant K. Srivastava & Prem C. Pandey & George P. Petropoulos & Nektarios N. Kourgialas & Varsha Pandey & Ujjwal Singh, 2019. "GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques," Resources, MDPI, vol. 8(2), pages 1-17, April.
    3. Sanaz Negahbani & Mehdi Momeni & Mina Moradizadeh, 2022. "Improving the Spatiotemporal Resolution of Soil Moisture through a Synergistic Combination of MODIS and LANDSAT8 Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1813-1832, April.
    4. Zhihui Yang & Jun Zhao & Jialiang Liu & Yuanyuan Wen & Yanqiang Wang, 2021. "Soil Moisture Retrieval Using Microwave Remote Sensing Data and a Deep Belief Network in the Naqu Region of the Tibetan Plateau," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    5. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    6. Wenlong Jing & Pengyan Zhang & Xiaodan Zhao, 2018. "Reconstructing Monthly ECV Global Soil Moisture with an Improved Spatial Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2523-2537, May.
    7. Prashant K. Srivastava & Dawei Han & Aradhana Yaduvanshi & George P. Petropoulos & Sudhir Kumar Singh & Rajesh Kumar Mall & Rajendra Prasad, 2017. "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    8. Dileep Kumar Gupta & Prashant K. Srivastava & Ankita Singh & George P. Petropoulos & Nikolaos Stathopoulos & Rajendra Prasad, 2021. "SMAP Soil Moisture Product Assessment over Wales, U.K., Using Observations from the WSMN Ground Monitoring Network," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    9. Sun, Hao & Gao, Jinhua, 2023. "A pixel-wise calculation of soil evaporative efficiency with thermal/optical remote sensing and meteorological reanalysis data for downscaling microwave soil moisture," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Zhiming Hong & Yijie Hu & Changlu Cui & Xining Yang & Chongxin Tao & Weiran Luo & Wen Zhang & Linyi Li & Lingkui Meng, 2022. "An Operational Downscaling Method of Solar-Induced Chlorophyll Fluorescence (SIF) for Regional Drought Monitoring," Agriculture, MDPI, vol. 12(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prashant Srivastava & Dawei Han & Miguel Rico-Ramirez & Deleen Al-Shrafany & Tanvir Islam, 2013. "Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5069-5087, December.
    2. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    5. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    6. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    7. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    8. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    9. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    10. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    11. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    12. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    13. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    14. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    15. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    16. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    17. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    18. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    19. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    20. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3127-3144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.