IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i13p3923-3946.html
   My bibliography  Save this article

The Impact of Extreme Low Flows on the Water Quality of the Lower Murray River and Lakes (South Australia)

Author

Listed:
  • Luke Mosley
  • Benjamin Zammit
  • Emily Leyden
  • Theresa Heneker
  • Matthew Hipsey
  • Dominic Skinner
  • Kane Aldridge

Abstract

The impact of extreme low flows on the water quality of the Lower Murray River and Lower Lakes (Alexandrina and Albert) in South Australia was assessed by comparing water quality from five sites during an extreme low flow period (March 2007–November 2009) and a preceding reference period (March 2003–November 2005). Significant increases in salinity, total nitrogen, total phosphorus, chlorophyll a and turbidity were observed in the Lower Lakes during the low flow period. Consequently, water quality guidelines for the protection of aquatic ecosystems were greatly exceeded. Principal Component Analysis, empirical and mass balance model calculations suggested these changes could be attributed primarily to the lack of flushing resulting in concentration of dissolved and suspended material in the lakes, and increased sediment resuspension as the lakes became shallower. The river sites also showed significant but more minor salinity increases during the extreme low flow period, but nutrient and turbidity concentrations decreased. The most plausible reasons for these changes were decreased catchment inputs and increased influence of saline groundwater inputs. The results highlight the vulnerability of arid and semi-arid lake systems to reduced flow conditions as a result of climatic changes and/or water management decisions. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Luke Mosley & Benjamin Zammit & Emily Leyden & Theresa Heneker & Matthew Hipsey & Dominic Skinner & Kane Aldridge, 2012. "The Impact of Extreme Low Flows on the Water Quality of the Lower Murray River and Lakes (South Australia)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3923-3946, October.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3923-3946
    DOI: 10.1007/s11269-012-0113-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0113-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0113-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabia Koklu & Bulent Sengorur & Bayram Topal, 2010. "Water Quality Assessment Using Multivariate Statistical Methods—A Case Study: Melen River System (Turkey)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 959-978, March.
    2. Intergovernmental Panel on Climate Change IPCC, 2008. "Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007: Synthesis Report," Working Papers id:1325, eSocialSciences.
    3. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Pu & Hongguang Cheng & Lu Lu & Shengtian Yang & Jing Xie & Fanghua Hao, 2015. "Spatial Profiling and Assessing Dominance of Sources to Water Phosphorus Burden in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 715-729, February.
    2. J. Kirby & Md. Mainuddin & M. Ahmad & L. Gao, 2013. "Simplified Monthly Hydrology and Irrigation Water Use Model to Explore Sustainable Water Management Options in the Murray-Darling Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4083-4097, September.
    3. Subhasis Giri & Ashok Mishra & Zhen Zhang & Richard G. Lathrop & Ali O. Alnahit, 2021. "Meteorological and Hydrological Drought Analysis and Its Impact on Water Quality and Stream Integrity," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    4. Long Trinh & Giang Vu & Peter Steen & Piet Lens, 2013. "Climate Change Adaptation Indicators to Assess Wastewater Management and Reuse Options in the Mekong Delta, Vietnam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1175-1191, March.
    5. Tapas K. Biswas & Luke M. Mosley, 2019. "From Mountain Ranges to Sweeping Plains, in Droughts and Flooding Rains; River Murray Water Quality over the Last Four Decades," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1087-1101, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarsky, Lyuba, 2010. "Climate-Resilient Industrial Development Paths: Design Principles and Alternative Models," Working Papers 179080, Tufts University, Global Development and Environment Institute.
    2. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    3. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    4. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    5. Muhammad Waseem & Muhammad Ajmal & Joo Heon Lee & Tae-Woong Kim, 2016. "Multivariate Drought Assessment Considering the Antecedent Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4221-4231, September.
    6. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    7. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    8. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    9. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    10. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    11. Moonju Kim & Befekadu Chemere & Kyungil Sung, 2019. "Effect of Heavy Rainfall Events on the Dry Matter Yield Trend of Whole Crop Maize ( Zea mays L.)," Agriculture, MDPI, vol. 9(4), pages 1-11, April.
    12. Tatàno, Fabio & Acerbi, Nadia & Monterubbiano, Chiara & Pretelli, Silvia & Tombari, Lucia & Mangani, Filippo, 2012. "Shoe manufacturing wastes: Characterisation of properties and recovery options," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 66-75.
    13. Seeberg-Elverfeldt, Christina & Schwarze, Stefan & Zeller, Manfred, 2008. "Payments for environmental services : incentives through carbon sequestration compensation for cocoa-based agroforestry systems in Central Sulawesi, Indonesia," Research in Development Economics and Policy (Discussion Paper Series) 92827, Universitaet Hohenheim, Department of Agricultural Economics and Social Sciences in the Tropics and Subtropics.
    14. Brunella Bonaccorso & David Peres & Antonio Castano & Antonino Cancelliere, 2015. "SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 459-470, January.
    15. Aune, Finn Roar & Grimsrud, Kristine & Lindholt, Lars & Rosendahl, Knut Einar & Storrøsten, Halvor Briseid, 2017. "Oil consumption subsidy removal in OPEC and other Non-OECD countries: Oil market impacts and welfare effects," Energy Economics, Elsevier, vol. 68(C), pages 395-409.
    16. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    17. Efrosyni Kanellou & Nicos Spyropoulos & Nicolas Dalezios, 2012. "Geoinformatic Intelligence Methodologies for Drought Spatiotemporal Variability in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1089-1106, March.
    18. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    19. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3923-3946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.