Fourier inference for stochastic volatility models with heavy-tailed innovations
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-016-0803-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John L. Knight & Stephen E. Satchell & Jun Yu, 2002. "Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 44(3), pages 319-335, September.
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011.
"Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
- Emanuele Taufer & Nikolai Leonenko & Marco Bee, 2009. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," DISA Working Papers 0907, Department of Computer and Management Sciences, University of Trento, Italy, revised 02 Dec 2009.
- Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
- Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
- Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013.
"A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers CWP11/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers 11/12, Institute for Fiscal Studies.
- Knight, John L. & Yu, Jun, 2002.
"Empirical Characteristic Function In Time Series Estimation,"
Econometric Theory, Cambridge University Press, vol. 18(3), pages 691-721, June.
- Knight, John & Yu, Jun, 1999. "Empirical Characteristic Function in Time Series Estimation," Working Papers 220, Department of Economics, The University of Auckland.
- Roman Liesenfeld & Robert C. Jung, 2000.
"Stochastic volatility models: conditional normality versus heavy-tailed distributions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
- Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
- Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
- Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
- Kotchoni, Rachidi, 2012.
"Applications of the characteristic function-based continuum GMM in finance,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
- Rachidi Kotchoni, 2012. "Applications of the Characteristic Function Based Continuum GMM in Finance," Post-Print hal-00867795, HAL.
- Joseph Ngatchou-Wandji & Michel Harel, 2013. "A Cramér-von Mises test for symmetry of the error distribution in asymptotically stationary stochastic models," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 207-236, October.
- José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
- Ruibing Qin & Zheng Tian & Hao Jin, 2011. "Truncating estimation for the change in stochastic trend with heavy-tailed innovations," Statistical Papers, Springer, vol. 52(1), pages 203-217, February.
- Jun Yu & Renate Meyer, 2006.
"Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison,"
Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
- Jun Yu & Renate Meyer, 2004. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Working Papers 23-2004, Singapore Management University, School of Economics.
- Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
- M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
- Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christophe Chesneau & Salima El Kolei & Fabien Navarro, 2022. "Parametric estimation of hidden Markov models by least squares type estimation and deconvolution," Statistical Papers, Springer, vol. 63(5), pages 1615-1648, October.
- Marie Hušková & Simos G. Meintanis & Charl Pretorius, 2022. "Tests for heteroskedasticity in transformation models," Statistical Papers, Springer, vol. 63(4), pages 1013-1049, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
- Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015.
"Forecasting Value-at-Risk using block structure multivariate stochastic volatility models,"
International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
- Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Massimiliano Caporin & Michael McAleer, 2013. "Forecasting Value-at-Risk using Block Structure Multivariate Stochastic Volatility Models," Tinbergen Institute Discussion Papers 13-073/III, Tinbergen Institute.
- Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 12/04, University of Canterbury, Department of Economics and Finance.
- Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Michael McAleer & Manabu Asai & Massimiliano Caporin, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," KIER Working Papers 812, Kyoto University, Institute of Economic Research.
- M. Hakan Eratalay, 2016.
"Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study,"
International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
- Mustafa Hakan Eratalay, 2012. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," EUSP Department of Economics Working Paper Series 2012/04, European University at St. Petersburg, Department of Economics.
- Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
- Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
- Ishihara, Tsunehiro & Omori, Yasuhiro, 2012.
"Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
- Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2010. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CIRJE F-Series CIRJE-F-746, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CIRJE F-Series CIRJE-F-700, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2010. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CARF F-Series CARF-F-221, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
- Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
- Kotchoni, Rachidi, 2014.
"The indirect continuous-GMM estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 464-488.
- Rachidi Kotchoni, 2013. "The Indirect Continuous-GMM Estimation," Working Papers hal-00867804, HAL.
- So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
- Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Hans J. Skaug & Jun Yu, 2007.
"Automated Likelihood Based Inference for Stochastic Volatility Models,"
Working Papers
CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Hans J. Skaug & Jun Yu, 2009. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 15-2009, Singapore Management University, School of Economics.
- Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
More about this item
Keywords
Stochastic volatility model; Minimum distance estimation; Heavy-tailed distribution; Characteristic function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:3:d:10.1007_s00362-016-0803-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.