IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i2d10.1007_s10260-024-00745-1.html
   My bibliography  Save this article

A new Bayesian discrepancy measure

Author

Listed:
  • Francesco Bertolino

    (University of Cagliari)

  • Mara Manca

    (University of Cagliari)

  • Monica Musio

    (University of Cagliari)

  • Walter Racugno

    (University of Cagliari)

  • Laura Ventura

    (University of Padua)

Abstract

The aim of this article is to make a contribution to the Bayesian procedure of testing precise hypotheses for parametric models. For this purpose, we define the Bayesian Discrepancy Measure that allows one to evaluate the suitability of a given hypothesis with respect to the available information (prior law and data). To summarise this information, the posterior median is employed, allowing a simple assessment of the discrepancy with a fixed hypothesis. The Bayesian Discrepancy Measure assesses the compatibility of a single hypothesis with the observed data, as opposed to the more common comparative approach where a hypothesis is rejected in favour of a competing hypothesis. The proposed measure of evidence has properties of consistency and invariance. After presenting the definition of the measure for a parameter of interest, both in the absence and in the presence of nuisance parameters, we illustrate some examples showing its conceptual and interpretative simplicity. Finally, we compare a test procedure based on the Bayesian Discrepancy Measure, with the Full Bayesian Significance Test, a well-known Bayesian testing procedure for sharp hypotheses.

Suggested Citation

  • Francesco Bertolino & Mara Manca & Monica Musio & Walter Racugno & Laura Ventura, 2024. "A new Bayesian discrepancy measure," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 381-405, April.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:2:d:10.1007_s10260-024-00745-1
    DOI: 10.1007/s10260-024-00745-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00745-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00745-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J. Benjamin & James O. Berger, 2019. "Three Recommendations for Improving the Use of p-Values," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 186-191, March.
    2. Erlis Ruli & Laura Ventura, 2021. "Can Bayesian, confidence distribution and frequentist inference agree?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 359-373, March.
    3. Valen E. Johnson & Richard D. Payne & Tianying Wang & Alex Asher & Soutrik Mandal, 2017. "On the Reproducibility of Psychological Science," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 1-10, January.
    4. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    2. Roberta Paroli & Guido Consonni, 2020. "Objective Bayesian comparison of order-constrained models in contingency tables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 139-165, March.
    3. Fukś Maksymilian & Wiejaczka Łukasz, 2025. "Climatic Determinants of Changes in the Ice Regime of Carpathian Rivers," Quaestiones Geographicae, Sciendo, vol. 44(1), pages 131-143.
    4. Sondang Marsinta Uli Panggabean & Mahjus Ekananda & Beta Yulianita Gitaharie & Leslie Djuranovik, 2025. "Export proceeds repatriation policies: A shield against exchange rate volatility in emerging markets?," Papers 2506.09168, arXiv.org.
    5. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    6. Bibhas Chakraborty, 2020. "Statistical Remedies for Medical Researchers," International Statistical Review, International Statistical Institute, vol. 88(3), pages 802-804, December.
    7. Chatelain, Jean-Bernard & Ralf, Kirsten, 2018. "Publish and Perish: Creative Destruction and Macroeconomic Theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(2), pages 65-101.
    8. Segurado, Pedro & Gutiérrez-Cánovas, Cayetano & Ferreira, Teresa & Branco, Paulo, 2022. "Stressor gradient coverage affects interaction identification," Ecological Modelling, Elsevier, vol. 472(C).
    9. Uwe Hassler & Marc‐Oliver Pohle, 2022. "Unlucky Number 13? Manipulating Evidence Subject to Snooping," International Statistical Review, International Statistical Institute, vol. 90(2), pages 397-410, August.
    10. Kim, Jae H., 2017. "Stock returns and investors' mood: Good day sunshine or spurious correlation?," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 94-103.
    11. Gergely Ganics & Atsushi Inoue & Barbara Rossi, 2021. "Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 307-324, January.
    12. Hirschauer, Norbert & Grüner, Sven & Mußhoff, Oliver & Becker, Claudia & Jantsch, Antje, 2020. "Can p-values be meaningfully interpreted without random sampling?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 71-91.
    13. Stephane Hess & Andrew Daly & Michiel Bliemer & Angelo Guevara & Ricardo Daziano & Thijs Dekker, 2025. "Statistical significance in choice modelling: computation, usage and reporting," Papers 2506.05996, arXiv.org, revised Jun 2025.
    14. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    15. Oliver Schilke & Sheen S. Levine & Olenka Kacperczyk & Lynne G. Zucker, 2019. "Call for Papers-Special Issue on Experiments in Organizational Theory," Organization Science, INFORMS, vol. 30(1), pages 232-234, February.
    16. Anna Dreber & Magnus Johannesson, 2025. "A framework for evaluating reproducibility and replicability in economics," Economic Inquiry, Western Economic Association International, vol. 63(2), pages 338-356, April.
    17. Lopez, Belen & Rangel, Celia & Fernández, Manuel, 2022. "The impact of corporate social responsibility strategy on the management and governance axis for sustainable growth," Journal of Business Research, Elsevier, vol. 150(C), pages 690-698.
    18. Michaelides, Michael, 2021. "Large sample size bias in empirical finance," Finance Research Letters, Elsevier, vol. 41(C).
    19. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    20. Scott, E. Marian, 2018. "The role of Statistics in the era of big data: Crucial, critical and under-valued," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 20-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:2:d:10.1007_s10260-024-00745-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.