A flexible Bayesian variable selection approach for modeling interval data
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-023-00727-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
- Smith, Michael & Kohn, Robert, 1996.
"Nonparametric regression using Bayesian variable selection,"
Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
- Smith, M. & Kohn, R., "undated". "Nonparametric Regression using Bayesian Variable Selection," Statistics Working Paper _009, Australian Graduate School of Management.
- Kiranmoy Das & Pulak Ghosh & Michael J. Daniels, 2021. "Modeling Multiple Time-Varying Related Groups: A Dynamic Hierarchical Bayesian Approach With an Application to the Health and Retirement Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 558-568, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
- Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
- Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Guarin, Alexander & Lozano, Ignacio, 2017. "Credit funding and banking fragility: A forecasting model for emerging economies," Emerging Markets Review, Elsevier, vol. 32(C), pages 168-189.
- Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014.
"Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
- Giordani, Paolo & Jacobson, Tor & von Schedvin , Erik & Villani, Mattias, 2011. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Working Paper Series 256, Sveriges Riksbank (Central Bank of Sweden).
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- Smith, Michael & Kohn, Robert & Mathur, Sharat K., 2000.
"Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data,"
Journal of Business Research, Elsevier, vol. 49(3), pages 229-244, September.
- Smith, M. & Mathur, S. & Kohn, R., "undated". "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Statistics Working Paper _010, Australian Graduate School of Management.
- Smith, M. & Mathur, S.K. & Kohn, R., 1997. "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Monash Econometrics and Business Statistics Working Papers 13/97, Monash University, Department of Econometrics and Business Statistics.
- Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
- Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001.
"Benchmark priors for Bayesian model averaging,"
Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
- Carmen Fernández & Eduardo Ley & Mark F. J. Steel, "undated". "Benchmark priors for Bayesian Model averaging," Working Papers 98-06, FEDEA.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 66, Edinburgh School of Economics, University of Edinburgh.
- Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics 9804001, University Library of Munich, Germany, revised 08 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 26, Edinburgh School of Economics, University of Edinburgh.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017.
"Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data,"
Working Papers
2017011, The University of Sheffield, Department of Economics.
- Brown, Sarah & Ghosh, Pulak & Pareek, Bhuvanesh & Taylor, Karl, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," IZA Discussion Papers 10910, Institute of Labor Economics (IZA).
- Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
- Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001.
"Model uncertainty in cross-country growth regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 1999. "Model uncertainty in cross-country growth regressions," Econometrics 9903003, University Library of Munich, Germany, revised 06 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark Steel, 2001. "Model uncertainty in cross-country growth regressions," Econometrics 0110002, University Library of Munich, Germany.
- Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022.
"Fast and accurate variational inference for models with many latent variables,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
- Rub'en Loaiza-Maya & Michael Stanley Smith & David J. Nott & Peter J. Danaher, 2020. "Fast and Accurate Variational Inference for Models with Many Latent Variables," Papers 2005.07430, arXiv.org, revised Apr 2021.
- Ley, Eduardo & Steel, Mark F.J., 2012.
"Mixtures of g-priors for Bayesian model averaging with economic applications,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
- Ley, Eduardo & Steel, Mark F. J., 2010. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 26941, University Library of Munich, Germany.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for bayesian model averaging with economic applications," DES - Working Papers. Statistics and Econometrics. WS ws112116, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for Bayesian Model Averaging with economic application," Policy Research Working Paper Series 5732, The World Bank.
- Ley, Eduardo & Steel, Mark F. J., 2011. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 36817, University Library of Munich, Germany.
- Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
- Lopresti, John, 2016. "Multiproduct firms and product scope adjustment in trade," Journal of International Economics, Elsevier, vol. 100(C), pages 160-173.
- Hoeting, Jennifer A. & Ibrahim, Joseph G., 1998. "Bayesian predictive simultaneous variable and transformation selection in the linear model," Computational Statistics & Data Analysis, Elsevier, vol. 28(1), pages 87-103, July.
- Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00727-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.