IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v22y2013i3p381-390.html
   My bibliography  Save this article

Consistency of the estimator of binary response models based on AUC maximization

Author

Listed:
  • Igor Fedotenkov

    ()

Abstract

This paper examines the asymptotic properties of a binary response model estimator based on maximization of the Area Under receiver operating characteristic Curve (AUC). Given certain assumptions, AUC maximization is a consistent method of binary response model estimation up to normalizations. As AUC is equivalent to Mann-Whitney U statistics and Wilcoxon test of ranks, maximization of area under ROC curve is equivalent to the maximization of corresponding statistics. Compared to parametric methods, such as logit and probit, AUC maximization relaxes assumptions about error distribution, but imposes some restrictions on the distribution of explanatory variables, which can be easily checked, since this information is observable. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Igor Fedotenkov, 2013. "Consistency of the estimator of binary response models based on AUC maximization," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 381-390, August.
  • Handle: RePEc:spr:stmapp:v:22:y:2013:i:3:p:381-390
    DOI: 10.1007/s10260-013-0229-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-013-0229-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    2. Manski, Charles F, 1983. "Closest Empirical Distribution Estimation," Econometrica, Econometric Society, vol. 51(2), pages 305-319, March.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Wenxia Ge & G. Whitmore, 2010. "Binary response and logistic regression in recent accounting research publications: a methodological note," Review of Quantitative Finance and Accounting, Springer, vol. 34(1), pages 81-93, January.
    5. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    6. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    7. Manski, Charles F., 1986. "Semiparametric analysis of binary response from response-based samples," Journal of Econometrics, Elsevier, vol. 31(1), pages 31-40, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    3. Le-Yu Chen & Ekaterina Oparina & Nattavudh Powdthavee & Sorawoot Srisuma, 2019. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Papers 1902.07696, arXiv.org, revised Apr 2021.
    4. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    5. Lee, Sokbae & Seo, Myung Hwan, 2008. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
    6. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    7. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    8. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    9. Francisco Alvarez-Cuadrado, 2006. "Improving The Efficiency And Robustness Of The Smoothed Maximum Score Estimator," Departmental Working Papers 2004-01, McGill University, Department of Economics.
    10. Mayer, Walter J. & Dorsey, Robert E., 1998. "Maximum score estimation of disequilibrium models and the role of anticipatory price-setting," Journal of Econometrics, Elsevier, vol. 87(1), pages 1-24, August.
    11. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    12. Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407, April.
    13. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    14. Schwiebert, Jörg, 2012. "Semiparametric Estimation of a Binary Choice Model with Sample Selection," Hannover Economic Papers (HEP) dp-505, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    16. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    17. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    18. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    19. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    20. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    21. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:3:p:381-390. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.