IDEAS home Printed from
   My bibliography  Save this article

Bayesian quantile regression for parametric nonlinear mixed effects models


  • Jing Wang



We propose quantile regression (QR) in the Bayesian framework for a class of nonlinear mixed effects models with a known, parametric model form for longitudinal data. Estimation of the regression quantiles is based on a likelihood-based approach using the asymmetric Laplace density. Posterior computations are carried out via Gibbs sampling and the adaptive rejection Metropolis algorithm. To assess the performance of the Bayesian QR estimator, we compare it with the mean regression estimator using real and simulated data. Results show that the Bayesian QR estimator provides a fuller examination of the shape of the conditional distribution of the response variable. Our approach is proposed for parametric nonlinear mixed effects models, and therefore may not be generalized to models without a given model form. Copyright Springer-Verlag 2012

Suggested Citation

  • Jing Wang, 2012. "Bayesian quantile regression for parametric nonlinear mixed effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 279-295, August.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:3:p:279-295
    DOI: 10.1007/s10260-012-0190-7

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    3. Yu, Keming & Stander, Julian, 2007. "Bayesian analysis of a Tobit quantile regression model," Journal of Econometrics, Elsevier, vol. 137(1), pages 260-276, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jang, Woosung & Wang, Huixia Judy, 2015. "A semiparametric Bayesian approach for joint-quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 99-115.
    2. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    3. repec:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0392-0 is not listed on IDEAS
    4. Qifa Xu & Cuixia Jiang & Yaoyao He, 2016. "An exponentially weighted quantile regression via SVM with application to estimating multiperiod VaR," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(2), pages 285-320, June.
    5. repec:bla:istatr:v:84:y:2016:i:3:p:327-344 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:3:p:279-295. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.