IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i2d10.1007_s10260-022-00660-3.html
   My bibliography  Save this article

Quantile regression in random effects meta-analysis model

Author

Listed:
  • Xiaowen Dai

    (Shanghai Lixin University of Accounting and Finance
    Shanghai Lixin University of Accounting and Finance)

  • Libin Jin

    (Shanghai Lixin University of Accounting and Finance
    Shanghai Lixin University of Accounting and Finance)

  • Lei Shi

    (Yunnan University of Finance and Economics)

Abstract

In meta-analysis model, due to the appearance of publication bias or outliers, as well as the small sample size, the normal assumption is usually unreliable. Therefore, the exploration of more robust estimation, such quantile regression (QR) method, is extremely important in meta-analysis area. This paper studies the QR estimation method in random-effects meta-analysis model based on the reformulation by asymmetric Laplace distribution (ALD). The maximum likelihood estimation using Monte Carlo Expectation Maximization algorithm and the Bayesian estimation using Markov chain Monte Carlo (MCMC) algorithm are proposed for computation of the QR estimates. The significance tests of regression coefficients are suggested using likelihood ratio statistics. For MCMC algorithm, a simple and efficient Gibbs sampling algorithm is employed based on a location-scale mixture representation of the ALD, and information criterions are considered for choosing the hyper-parameters. Monte Carlo simulations are conducted to study the finite sample performance of the proposed methodology and analysis of two real data sets are presented for illustrations. Our results show that QR estimation methods perform very well, especially in case of non-normal assumption in meta-regression models. The detailed algorithms and software code are available for easy use in applications.

Suggested Citation

  • Xiaowen Dai & Libin Jin & Lei Shi, 2023. "Quantile regression in random effects meta-analysis model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 469-492, June.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00660-3
    DOI: 10.1007/s10260-022-00660-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00660-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00660-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.
    2. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    3. Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
    4. Yuzhu Tian & Heng Lian & Maozai Tian, 2017. "Bayesian composite quantile regression for linear mixed-effects models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(15), pages 7717-7731, August.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
    7. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    8. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    9. Leydold, Josef & Hörmann, Wolfgang, 2011. "Generating generalized inverse Gaussian random variates by fast inversion," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 213-217, January.
    10. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    11. Jing Wang, 2012. "Bayesian quantile regression for parametric nonlinear mixed effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 279-295, August.
    12. Quintana, Fernando A. & Liu, Jun S. & Pino, Guido E. del, 1999. "Monte Carlo EM with importance reweighting and its applications in random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 429-444, February.
    13. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    2. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.
    3. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    4. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    5. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    6. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    7. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    8. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.
    9. Jang, Woosung & Wang, Huixia Judy, 2015. "A semiparametric Bayesian approach for joint-quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 99-115.
    10. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    11. Chang-Sheng Liu & Han-Ying Liang, 2023. "Bayesian empirical likelihood of quantile regression with missing observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 285-313, April.
    12. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    13. Jose E. Gomez-Gonzalez & Jorge M. Uribe & Oscar M. Valencia, 2024. "Asymmetric Sovereign Risk: Implications for Climate Change Preparation," IREA Working Papers 202401, University of Barcelona, Research Institute of Applied Economics, revised Jan 2024.
    14. Elisabeth Waldmann & Thomas Kneib & Yu Ryan Yu & Stefan Lang, 2012. "Bayesian semiparametric additive quantile regression," Working Papers 2012-06, Faculty of Economics and Statistics, Universität Innsbruck.
    15. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    16. Sriram, Karthik, 2015. "A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 18-26.
    17. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    18. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    19. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    20. Jing Wang, 2012. "Bayesian quantile regression for parametric nonlinear mixed effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 279-295, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00660-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.