IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v35y2010i2p319-329.html
   My bibliography  Save this article

Characterizing multidimensional inequality measures which fulfil the Pigou–Dalton bundle principle

Author

Listed:
  • Casilda Lasso de la Vega

    ()

  • Ana Urrutia
  • Amaia Sarachu

Abstract

In the unidimensional setting, the well known Pigou-Dalton transfer principle is the basic axiom to order distribution in terms of inequality. This axiom has a number of generalizations to the multidimensional approach which have been used to derive multidimensional inequality measures. However, up to now, none of them has assumed the Pigou-Dalton bundle dominance criterion, introduced by Fleurbaey and Trannoy (2003) although this principle captures the basic idea of the original Pigou-Dalton transfer principle, demanding that also in the multidimensional context “a transfer from a richer person to a poorer one decreases inequality”. Assuming this criterion the aim of this paper is to characterize multidimensional inequality measures. For doing so, firstly we derive the canonical forms of multidimensional aggregative inequality measures, both relative and absolute, which fulfil this property. Then following the Atkinson and Kolm-Pollak approaches we identify sub-families whose underlying social evaluation functions are separable. The inequality measures we derive share their functional forms with other parameter families already characterized in the literature, the major difference being the restrictions upon the parameters. Nevertheless, we show that it is not necessary to give up any of the usual requirements to assume the Pigou-Dalton bundle criterion. Thus, in empirical applications it makes sense to choose measures that also fulfil this principle.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Casilda Lasso de la Vega & Ana Urrutia & Amaia Sarachu, 2010. "Characterizing multidimensional inequality measures which fulfil the Pigou–Dalton bundle principle," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(2), pages 319-329, July.
  • Handle: RePEc:spr:sochwe:v:35:y:2010:i:2:p:319-329 DOI: 10.1007/s00355-010-0443-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-010-0443-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thibault Gajdos & John Weymark, 2005. "Multidimensional generalized Gini indices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), pages 471-496.
    2. List, C., 1999. "Multidimensional Inequality Measurement: a Proposal," Economics Papers 9927, Economics Group, Nuffield College, University of Oxford.
    3. Shorrocks, Anthony F, 1984. "Inequality Decomposition by Population Subgroups," Econometrica, Econometric Society, vol. 52(6), pages 1369-1385, November.
    4. Diez Henar & Lasso de la Vega M. Casilda & de Sarachu Amaia & Urrutia Ana M., 2007. "A Consistent Multidimensional Generalization of the Pigou-Dalton Transfer Principle: An Analysis," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-17, December.
    5. A. B. Atkinson & F. Bourguignon, 1982. "The Comparison of Multi-Dimensioned Distributions of Economic Status," Review of Economic Studies, Oxford University Press, vol. 49(2), pages 183-201.
    6. Tsui Kai-Yuen, 1995. "Multidimensional Generalizations of the Relative and Absolute Inequality Indices: The Atkinson-Kolm-Sen Approach," Journal of Economic Theory, Elsevier, vol. 67(1), pages 251-265, October.
    7. Chipman, John S., 1977. "An empirical implication of Auspitz-Lieben-Edgeworth-Pareto complementarity," Journal of Economic Theory, Elsevier, vol. 14(1), pages 228-231, February.
    8. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    9. Maasoumi, Esfandiar, 1986. "The Measurement and Decomposition of Multi-dimensional Inequality," Econometrica, Econometric Society, vol. 54(4), pages 991-997, July.
    10. Serge-Christophe Kolm, 1977. "Multidimensional Egalitarianisms," The Quarterly Journal of Economics, Oxford University Press, vol. 91(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asis Kumar Banerjee, 2014. "Multidimensional Lorenz dominance: A definition and an example," Working Papers 328, ECINEQ, Society for the Study of Economic Inequality.
    2. BOSSERT, Walter & CHAKRAVARTY, Satya R. & D’AMBROSIO, Conchita, 2009. "Multidimensional Poverty and Material Deprivation," Cahiers de recherche 2009-11, Universite de Montreal, Departement de sciences economiques.
    3. Asis Banerjee, 2014. "A multidimensional Lorenz dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(1), pages 171-191, January.
    4. Mª Casilda Lasso de la Vega & Ana Urrutia & Amaia de Sarachu, 2011. "Capturing the distribution sensitivity among the poor in a multidimensional framework. A new proposal," Working Papers 193, ECINEQ, Society for the Study of Economic Inequality.

    More about this item

    JEL classification:

    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:35:y:2010:i:2:p:319-329. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.