A Unique Perspective on Vulnerability and Route Dynamics in the Global Liner Shipping Network
Author
Abstract
Suggested Citation
DOI: 10.1007/s43069-024-00358-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Zhiyuan & Meng, Qiang & Wang, Shuaian & Sun, Zhuo, 2014. "Global intermodal liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 28-39.
- Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
- Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
- Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
- Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
- Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
- Guo, Shu & Lyu, Jing, 2024. "Evolution and stability of liner shipping networks in Northeast Asia from 2018 to 2022," Transport Policy, Elsevier, vol. 158(C), pages 159-174.
- Xu, Mengqiao & Deng, Wenhui & Zhu, Yifan & LÜ, Linyuan, 2023. "Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Cao, Yuhao & Xin, Xuri & Jarumaneeroj, Pisit & Li, Huanhuan & Feng, Yinwei & Wang, Jin & Wang, Xinjian & Pyne, Robyn & Yang, Zaili, 2025. "Data-driven resilience analysis of the global container shipping network against two cascading failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
- Xu, Yang & Peng, Peng & Claramunt, Christophe & Lu, Feng & Yan, Ran, 2024. "Cascading failure modelling in global container shipping network using mass vessel trajectory data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
- Wu, Di & Yu, Changqing & Zhao, Yannan & Guo, Jialun, 2024. "Changes in vulnerability of global container shipping networks before and after the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 114(C).
- Lu, Bo & Sun, Yue & Wang, Huipo & Wang, Jian-Jun & Shuai Liu, Samuel & Cheng, T.C.E., 2024. "Dynamic resilience analysis of the liner shipping network: From structure to cooperative mechanism," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
- César Ducruet, 2023. "Shipping network analysis: state-of-the-art and application to the global financial crisis," Post-Print halshs-04588340, HAL.
- Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
- Li, Siping & Zhou, Yaoming, 2024. "Integrating equity and efficiency into urban logistics resilience under emergency lockdowns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
- Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Serkan Karakas & Mehmet Kirmizi & Huseyin Gencer & Kevin Cullinane, 2024. "A resilience assessment model for dry bulk shipping supply chains: the case of the Ukraine grain corridor," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 391-413, September.
- Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
- Yaxin Pang & Shenle Pan & Eric Ballot, 2024. "Resilience Analysis of Multi-modal Logistics Service Network Through Robust Optimization with Budget-of-Uncertainty," Papers 2405.12565, arXiv.org.
- Liupeng, Jiang & Guangsheng, Wang & Xuejun, Feng & Tong, Yu & Zhiyi, Lei, 2024. "Study on cascading failure vulnerability of the 21st-century Maritime Silk Road container shipping network," Journal of Transport Geography, Elsevier, vol. 117(C).
- Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
- Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Guangying Jin & Wei Feng & Qingpu Meng, 2022. "Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
- Ryuichi Shibasaki & Takayuki Iijima & Taiji Kawakami & Takashi Kadono & Tatsuyuki Shishido, 2017. "Network assignment model of integrating maritime and hinterland container shipping: application to Central America," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 234-273, June.
More about this item
Keywords
Global liner shipping network; Pandemic; Resilience; Vulnerability; Route;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:3:d:10.1007_s43069-024-00358-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.