IDEAS home Printed from
   My bibliography  Save this article

Identifikation und praktische Nutzung von Mustern des Aufwärtskonsums


  • Michael Löffler

    (Dr. Ing. h. c. F. Porsche AG)

  • Reinhold Decker

    (Universität Bielefeld)


Zusammenfassung In vielen Produktbereichen ermöglichen die A nbieter ihren K unden die Auswahl unter klar abgestuften A ngebotskategorien. Im Idealfall erfolgt nach dem K auf eines Produktes ein Folgekauf in einer höherwertigen Produktkategorie desselben Anbieters. Diese zeichnet sich typischerweise durch einen erweiterten Funktionsumfang, ein höheres Prestige und/oder ein gehobenes Preisniveau aus und ermöglicht den Käufern eine S teigerung ihres empfundenen Nutzens. Um dieses Kaufverhaltensmuster für Marketingentscheidungen nutzen zu können, ist seine zuverlässige Identifikation als grundsätzliches S trukturmerkmal des betreffenden Marktes erforderlich. Der vorliegende Beitrag zeigt wie eine diesbezügliche Entscheidungsunterstützung erfolgen kann und operationalisiert das Phänomen des „Aufwärtskonsums“ mithilfe eines einfachen Markov-Ansatzes. Der Zielsetzung einer langfristigen Marketingunterstützung folgend richtet sich der F okus auf die Grenzverteilung des betrachteten Markov-Prozesses. Anwendbarkeit und praktischer Nutzen der vorgeschlagenen Vorgehensweise werden anhand einer umfassenden, länderübergreifenden Studie aus dem Automobilbereich illustriert. Die empirischen Ergebnisse dokumentieren nicht nur die grundsätzliche N achweisbarkeit von A ufwärtskonsum, sondern unterstreichen auch dessen Abhängigkeit vom jeweiligen sozioökonomischen Kontext.

Suggested Citation

  • Michael Löffler & Reinhold Decker, 2012. "Identifikation und praktische Nutzung von Mustern des Aufwärtskonsums," Schmalenbach Journal of Business Research, Springer, vol. 64(7), pages 722-746, November.
  • Handle: RePEc:spr:sjobre:v:64:y:2012:i:7:d:10.1007_bf03373703
    DOI: 10.1007/BF03373703

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    2. Wagner, Udo & Taudes, Alfred, 1987. "Stochastic models of consumer behaviour," European Journal of Operational Research, Elsevier, vol. 29(1), pages 1-23, April.
    3. W-K Ching & M K Ng & K-K Wong & E Altman, 2004. "Customer lifetime value: stochastic optimization approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 860-868, August.
    4. Christian, Grönroos & Leppänen, Hanna, 2009. "The Hybrid Consumer: Exploring the Drivers of a New Consumer Behaviour Type," Working Papers 543, Hanken School of Economics.
    5. Jean-Noël Kapferer, 2012. "Why Luxury Should not Delocalize: a critique of a growing tendency," Post-Print hal-00715585, HAL.
    6. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    7. Jerome D. Herniter & John F. Magee, 1961. "Customer Behavior As a Markov Process," Operations Research, INFORMS, vol. 9(1), pages 105-122, February.
    8. Greg M. Allenby & Mark J. Garratt & Peter E. Rossi, 2010. "A Model for Trade-Up and Change in Considered Brands," Marketing Science, INFORMS, vol. 29(1), pages 40-56, 01-02.
    9. Yoosun Hann, 2011. "Cross-Cultural Understandings of “Face” and their Influence on Luxury Brand Consumption: A Comparison of British and Korean Attitudes and Practices," Journal of Global Fashion Marketing, Taylor & Francis Journals, vol. 2(1), pages 36-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    2. Mattauch, Linus & Hepburn, Cameron & Stern, Nicholas, 2018. "Pigou pushes preferences: decarbonisation and endogenous values," INET Oxford Working Papers 2018-16, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    3. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    4. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    5. Allen, Jaime & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2019. "On evasion behaviour in public transport: Dissatisfaction or contagion?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 626-651.
    6. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    7. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    8. Gil Solá, Ana, 2016. "Constructing work travel inequalities: The role of household gender contracts," Journal of Transport Geography, Elsevier, vol. 53(C), pages 32-40.
    9. Jaroslav Burian & Lenka Zajíčková & Igor Ivan & Karel Macků, 2018. "Attitudes and Motivation to Use Public or Individual Transport: A Case Study of Two Middle-Sized Cities," Social Sciences, MDPI, vol. 7(6), pages 1-25, May.
    10. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    11. Hafram, Maryam & Hasim, Abdul Hafid, 2018. "Factors Affecting Subjective Norms in Use and Have a Private Vehicle in Makassar, Indonesia," INA-Rxiv jfzh3, Center for Open Science.
    12. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    13. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    14. Marco Diana & Patricia Mokhtarian, 2009. "Grouping travelers on the basis of their different car and transit levels of use," Transportation, Springer, vol. 36(4), pages 455-467, July.
    15. Sha Yang & Yi Zhao & Ravi Dhar, 2010. "Modeling the Underreporting Bias in Panel Survey Data," Marketing Science, INFORMS, vol. 29(3), pages 525-539, 05-06.
    16. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    17. Sascha von Behren & Lisa Bönisch & Ulrich Niklas & Bastian Chlond, 2020. "Revealing Motives for Car Use in Modern Cities—A Case Study from Berlin and San Francisco," Sustainability, MDPI, vol. 12(13), pages 1-18, June.
    18. Humpe, Andreas & Gössling, Stefan & Haustein, Sonja, 2022. "Car careers: A socio-psychological evaluation of aspirational automobile ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 156-166.
    19. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    20. Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.

    More about this item



    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:64:y:2012:i:7:d:10.1007_bf03373703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.