IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i1d10.1007_s11192-013-1140-3.html
   My bibliography  Save this article

Aggregative and stochastic model of main path identification: a case study on graphene

Author

Listed:
  • Woondong Yeo

    (Korea University
    Korea Institute of Science and Technology Information)

  • Seonho Kim

    (Korea Institute of Science and Technology Information)

  • Jae-Min Lee

    (Korea Institute of Science and Technology Information)

  • Jaewoo Kang

    (Korea University)

Abstract

This paper suggests a new method to search main path, as a knowledge trajectory, in the citation network. To enhance the performance and remedy the problems suggested by other researchers for main path analysis (Hummon and Doreian, Social Networks 11(1): 39–63, 1989), we applied two techniques, the aggregative approach and the stochastic approach. The first technique is used to offer improvement of link count methods, such as SPC, SPLC, SPNP, and NPPC, which have a potential problem of making a mistaken picture since they calculate link weights based on a individual topology of a citation link; the other technique, the second-order Markov chains, is used for path dependent search to improve the Hummon and Doreian’s priority first search method. The case study on graphene that tested the performance of our new method showed promising results, assuring us that our new method can be an improved alternative of main path analysis. Our method’s beneficial effects are summed up in eight aspects: (1) path dependent search, (2) basic research search rather than applied research, (3) path merge and split, (4) multiple main paths, (5) backward search for knowledge origin identification, (6) robustness for indiscriminately selected citations, (7) availability in an acyclic network, (8) completely automated search.

Suggested Citation

  • Woondong Yeo & Seonho Kim & Jae-Min Lee & Jaewoo Kang, 2014. "Aggregative and stochastic model of main path identification: a case study on graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 633-655, January.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:1:d:10.1007_s11192-013-1140-3
    DOI: 10.1007/s11192-013-1140-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1140-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1140-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    2. Howard D. White, 2001. "Authors as citers over time," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(2), pages 87-108.
    3. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    4. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    5. Bhupatiraju, Samyukta & Nomaler, Önder & Triulzi, Giorgio & Verspagen, Bart, 2012. "Knowledge flows – Analyzing the core literature of innovation, entrepreneurship and science and technology studies," Research Policy, Elsevier, vol. 41(7), pages 1205-1218.
    6. Francis Narin & Gabriel Pinski & Helen Hofer Gee, 1976. "Structure of the Biomedical Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(1), pages 25-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    2. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    3. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    4. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    5. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    6. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    7. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    8. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Chang Hung & John S. Liu & Louis Y. Y. Lu & Yu-Chiang Tseng, 2014. "Technological change in lithium iron phosphate battery: the key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 97-120, July.
    2. Mei Hsiu-Ching Ho & John S. Liu & Kerr C.-T. Chang, 2017. "To include or not: the role of review papers in citation-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 65-76, January.
    3. Chun-Hua Hsiao & Kai-Yu Tang & John S. Liu, 2015. "Citation-based analysis of literature: a case study of technology acceptance research," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1091-1110, November.
    4. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    5. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    6. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    7. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    8. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Louis Y.Y. Lu & John S. Liu, 2014. "The Knowledge Diffusion Paths of Corporate Social Responsibility – From 1970 to 2011," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 21(2), pages 113-128, March.
    10. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    11. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2018. "Missing links: Timing characteristics and their implications for capturing contemporaneous technological developments," Journal of Informetrics, Elsevier, vol. 12(1), pages 259-270.
    12. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    13. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    14. Zhong, Sheng & Verspagen, Bart, 2016. "The role of technological trajectories in catching-up-based development: An application to energy efficiency technologies," MERIT Working Papers 2016-013, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    16. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    17. Muhamed Kudic & Mariia Shkolnykova, 2020. "From biotech to bioeconomy: New empirical evidence on the technological transition to plant-based bioeconomy based on patent data," Bremen Papers on Economics & Innovation 2002, University of Bremen, Faculty of Business Studies and Economics.
    18. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    19. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    20. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).

    More about this item

    Keywords

    Main path analysis; Second-order Markov chains; Markov model; Historiography; Quantitative method;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:1:d:10.1007_s11192-013-1140-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.