IDEAS home Printed from
   My bibliography  Save this article

Building direct citation networks


  • Bruno Miranda Henrique

    () (University of Brasilia)

  • Vinicius Amorim Sobreiro

    () (University of Brasilia)

  • Herbert Kimura

    () (University of Brasilia)


Abstract Citation networks are the basis for main path analysis (MPA), which has become an important tool in bibliometric studies. MPA can be used to map the main body of work of a scientific field, highlighting its most important literature and chronological evolution. Its uses goes from surveying the state of the art of a given subject to selecting study material for new research. MPA is conducted on a citation network and there is a well established literature accounting for methods of finding the most relevant paths. However, the details of how the citation network is actually built are not richly described in the specialized literature. Manually relating the available references of a given field would prove to be a difficult task. Given this context, we propose an automatic method, providing a simple algorithm for building citation networks with computer implementations and preventing cyclic paths. The algorithm is built quantitatively and is applicable to studies on the mechanisms of any science field. As an example, we go through every proposed step to select the papers which constitute the main path of the literature on forecasting stock prices using machine learning techniques.

Suggested Citation

  • Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2676-z
    DOI: 10.1007/s11192-018-2676-z

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Vincent C. Ma & John S. Liu, 2016. "Exploring the research fronts and main paths of literature: a case study of shareholder activism research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 33-52, October.
    2. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    3. repec:spr:scient:v:64:y:2005:i:3:d:10.1007_s11192-005-0255-6 is not listed on IDEAS
    4. repec:spr:scient:v:94:y:2013:i:1:d:10.1007_s11192-012-0744-3 is not listed on IDEAS
    5. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    7. John S. Liu & Hsiao-Hui Chen & Mei Hsiu-Ching Ho & Yu-Chen Li, 2014. "Citations with different levels of relevancy: Tracing the main paths of legal opinions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2479-2488, December.
    8. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    9. Garfield, Eugene, 2009. "From the science of science to Scientometrics visualizing the history of science with HistCite software," Journal of Informetrics, Elsevier, vol. 3(3), pages 173-179.
    10. repec:spr:scient:v:84:y:2010:i:2:d:10.1007_s11192-009-0146-3 is not listed on IDEAS
    11. repec:taf:jbemgt:v:17:y:2016:i:6:p:945-959 is not listed on IDEAS
    12. Xiao, Yu & Lu, Louis Y.Y. & Liu, John S. & Zhou, Zhili, 2014. "Knowledge diffusion path analysis of data quality literature: A main path analysis," Journal of Informetrics, Elsevier, vol. 8(3), pages 594-605.
    13. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    14. repec:spr:scient:v:98:y:2014:i:1:d:10.1007_s11192-013-1140-3 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2676-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.