IDEAS home Printed from
   My bibliography  Save this article

Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis


  • Guang Yu

    (Harbin Institute of Technology)

  • Ming-Yang Wang

    () (Harbin Institute of Technology)

  • Da-Ren Yu

    () (Harbin Institute of Technology)


This study investigates the knowledge diffusion patterns of Nanoscience & Nanotechnology (N&N) by analyzing the overall research interactions between N&N and nano-related subjects through citation analysis. Three perspectives were investigated to achieve this purpose. Firstly, the overall research interactions were analyzed to identify the dominant driving forces in advancing the development of N&N. Secondly, the knowledge diffusion intensity between N&N and nano-related subjects was investigated to determine the areas most closely related to N&N. Thirdly, the diffusion speed was identified to detect the time distance of knowledge diffusion between N&N and nano-related subjects. The analysis reveals that driving forces from the outside environment rather than within N&N itself make the foremost contributions to the development of N&N. From 1998 to 2007, Material Science, Physics, Chemistry, N&N, Electrical & Electronic and Metallurgy & Metallurgical Engineering are the key contributory and reference subjects for N&N. Knowledge transfer within N&N itself is the quickest. And the speed of knowledge diffusion from other subjects to N&N is slower than that from N&N to other subjects, demonstrating asymmetry of knowledge diffusion in the development of N&N. The results indicate that N&N has matured into a relatively open, diffuse and dynamic system of interactive subjects.

Suggested Citation

  • Guang Yu & Ming-Yang Wang & Da-Ren Yu, 2010. "Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 81-97, July.
  • Handle: RePEc:spr:scient:v:84:y:2010:i:1:d:10.1007_s11192-009-0090-2
    DOI: 10.1007/s11192-009-0090-2

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    3. Masatsura Igami, 2008. "Exploration of the evolution of nanotechnology via mapping of patent applications," Scientometrics, Springer;Akadémiai Kiadó, vol. 77(2), pages 289-308, November.
    4. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    5. Keith Pavitt, 1998. "Do patents reflect the useful research output of universities?," Research Evaluation, Oxford University Press, vol. 7(2), pages 105-111, August.
    6. Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
    7. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    8. Ronald N. Kostoff & Ryan B. Barth & Clifford G. Y. Lau, 2008. "Relation of seminal nanotechnology document production to total nanotechnology document production — South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 43-67, July.
    9. Martin Meyer, 2000. "Patent Citations in a Novel Field of Technology — What Can They Tell about Interactions between Emerging Communities of Science and Technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 48(2), pages 151-178, September.
    10. Katy Börner & Shashikant Penumarthy & Mark Meiss & Weimao Ke, 2006. "Mapping the diffusion of scholarly knowledge among major U.S. research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 415-426, September.
    11. Loet Leydesdorff & Caroline Wagner, 2009. "Is the United States losing ground in science? A global perspective on the world science system," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 23-36, January.
    12. Ronald N. Kostoff & Raymond G. Koytcheff & Clifford G. Y. Lau, 2007. "Global nanotechnology research metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 565-601, March.
    13. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    14. Martin S. Meyer, 2001. "Patent citation analysis in a novel field of technology:An exploration of nano-science and nano-technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 163-183, April.
    15. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    16. Elise Bassecoulard & Alain Lelu & Michel Zitt, 2007. "Mapping nanosciences by citation flows: A preliminary analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 859-880, March.
    17. Guang Yu & Rui Guo & Yi-Jun Li, 2006. "The influence of publication delays on three ISI indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(3), pages 511-527, December.
    18. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    19. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    20. Jasjit Singh, 2007. "Asymmetry of knowledge spillovers between MNCs and host country firms," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 38(5), pages 764-786, September.
    21. Guang Yu & Xiao-Hong Wang & Da-Ren Yu, 2005. "The influence of publication delays on impact factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(2), pages 235-246, August.
    22. Martin Meyer, 2007. "What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 779-810, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    2. Young-Don Cho & Hoo-Gon Choi, 2013. "Principal parameters affecting R&D exploitation of nanotechnology research: a case for Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 881-899, September.
    3. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    4. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    2. Goio Etxebarria & Mikel Gomez-Uranga & Jon Barrutia, 2012. "Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 253-268, April.
    3. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    4. Katarina Larsen, 2008. "Knowledge network hubs and measures of research impact, science structure, and publication output in nanostructured solar cell research," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(1), pages 123-142, January.
    5. Francesco Lamperti & Franco Malerba & Roberto Mavilia & Giorgio Tripodi, 2019. "Does the Position in the Inter-sectoral Knowledge Space affect the International Competitiveness of Industries?," LEM Papers Series 2019/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    7. Joaquín M. Azagra-Caro, 2012. "Access to universities’ public knowledge: who’s more nationalist?," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
    8. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    9. Shyh-Jen Wang, 2007. "Factors to evaluate a patent in addition to citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 509-522, June.
    10. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    11. Anindya Ghosh & Xavier Martin & Johannes M. Pennings & Filippo Carlo Wezel, 2014. "Ambition Is Nothing Without Focus: Compensating for Negative Transfer of Experience in R&D," Organization Science, INFORMS, vol. 25(2), pages 572-590, April.
    12. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    13. Papazoglou, Michalis E. & Spanos, Yiannis E., 2018. "Bridging distant technological domains: A longitudinal study of the determinants of breadth of innovation diffusion," Research Policy, Elsevier, vol. 47(9), pages 1713-1728.
    14. Laura I. Schultz & Frederick L. Joutz, 2010. "Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 155-170, October.
    15. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    16. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    17. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    18. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    19. Jasjit Singh & Ajay Agrawal, 2011. "Recruiting for Ideas: How Firms Exploit the Prior Inventions of New Hires," Management Science, INFORMS, vol. 57(1), pages 129-150, January.
    20. Hajime Eto, 2003. "Interdisciplinary information input and output of a nano-technology project," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 5-33, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:84:y:2010:i:1:d:10.1007_s11192-009-0090-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.