IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v85y2010i1d10.1007_s11192-010-0244-2.html
   My bibliography  Save this article

Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies

Author

Listed:
  • Laura I. Schultz

    (University of Albany)

  • Frederick L. Joutz

    (The George Washington University)

Abstract

Nanotechnology is an emerging field of science with the potential to generate new and enhance existing products and transform the production process. US patent data is used to track the emergence of nanotechnologies since 1978. The nanotechnologies that have undergone the most development are identified using patent citation data and co-citation patterns of patents are examined to define clusters of related nanotechnologies. The potential for economic impact of the emerging nanotechnologies is assessed using a generality index.

Suggested Citation

  • Laura I. Schultz & Frederick L. Joutz, 2010. "Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 155-170, October.
  • Handle: RePEc:spr:scient:v:85:y:2010:i:1:d:10.1007_s11192-010-0244-2
    DOI: 10.1007/s11192-010-0244-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-010-0244-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-010-0244-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poh Kam Wong & Yuen Ping Ho & Casey K. Chan, 2007. "Internationalization and evolution of application areas of an emerging technology: The case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 715-737, March.
    2. Jan Youtie & Maurizio Iacopetta & Stuart Graham, 2008. "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?," The Journal of Technology Transfer, Springer, vol. 33(3), pages 315-329, June.
    3. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    4. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    5. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    6. Elise Bassecoulard & Alain Lelu & Michel Zitt, 2007. "Mapping nanosciences by citation flows: A preliminary analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 859-880, March.
    7. Martin Meyer, 2007. "What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 779-810, March.
    8. Bronwyn H. Hall & Manuel Trajtenberg, 2004. "Uncovering GPTS with Patent Data," NBER Working Papers 10901, National Bureau of Economic Research, Inc.
    9. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    10. Mogoutov, Andrei & Kahane, Bernard, 2007. "Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking," Research Policy, Elsevier, vol. 36(6), pages 893-903, July.
    11. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kreuchauff, Florian & Teichert, Nina, 2014. "Nanotechnology as general purpose technology," Working Paper Series in Economics 53, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Mario Coccia, 2017. "General purpose technologies in dynamic systems: visual representation and analyses of complex drivers," IRCrES Working Paper 201705, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    3. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.
    4. Mario COCCIA, 2017. "The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(4), pages 291-303, December.
    5. Liu, Yong & Du, Jun-liang & Yang, Jin-bi & Qian, Wu-yong & Forrest, Jeffrey Yi-Lin, 2019. "An incentive mechanism for general purpose technologies R&D based on the concept of super-conflict equilibrium: Empirical evidence from nano industrial technology in China," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 185-197.
    6. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    7. Kathryn Rudie Harrigan & Yunzhe Fang, 2020. "The financial benefits of persistently high forward citations," The Journal of Technology Transfer, Springer, vol. 45(2), pages 619-647, April.
    8. Appio, Francesco Paolo & Martini, Antonella & Fantoni, Gualtiero, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 154-165.
    9. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    10. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    11. Laura Schultz, 2011. "Nanotechnology’s triple helix: a case study of the University at Albany’s College of Nanoscale Science and Engineering," The Journal of Technology Transfer, Springer, vol. 36(5), pages 546-564, October.
    12. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    2. Kreuchauff, Florian & Teichert, Nina, 2014. "Nanotechnology as general purpose technology," Working Paper Series in Economics 53, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    4. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    5. Wang, Lili & Notten, Ad, 2011. "Mapping the interdisciplinary nature and co-evolutionary patterns in five nano-industrial sectors," MERIT Working Papers 2011-029, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).
    7. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
    8. Guang Yu & Ming-Yang Wang & Da-Ren Yu, 2010. "Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 81-97, July.
    9. Qingjun Zhao & Jiancheng Guan, 2013. "Love dynamics between science and technology: some evidences in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 113-132, January.
    10. Tomaz Bartol & Karmen Stopar, 2015. "Nano language and distribution of article title terms according to power laws," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 435-451, May.
    11. Jiancheng Guan & Yuan Shi, 2012. "Transnational citation, technological diversity and small world in global nanotechnology patenting," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 609-633, December.
    12. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    13. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    14. Qingjun Zhao & Jiancheng Guan, 2012. "Modeling the dynamic relation between science and technology in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 561-579, February.
    15. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    16. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    17. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
    18. Lili Wang & Ad Notten & Alexandru Surpatean, 2013. "Interdisciplinarity of nano research fields: a keyword mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 877-892, March.
    19. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    20. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:85:y:2010:i:1:d:10.1007_s11192-010-0244-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.