IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v122y2020i3d10.1007_s11192-019-03342-2.html
   My bibliography  Save this article

Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes

Author

Listed:
  • Diana Purwitasari

    (Institut Teknologi Sepuluh Nopember
    Institut Teknologi Sepuluh Nopember)

  • Chastine Fatichah

    (Institut Teknologi Sepuluh Nopember)

  • Surya Sumpeno

    (Institut Teknologi Sepuluh Nopember
    Institut Teknologi Sepuluh Nopember)

  • Christian Steglich

    (University of Groningen)

  • Mauridhi Hery Purnomo

    (Institut Teknologi Sepuluh Nopember
    Institut Teknologi Sepuluh Nopember)

Abstract

Knowing driving factors and understanding researcher behaviors from the dynamics of collaborations over time offer some insights, i.e. help funding agencies in designing research grant policies. We present longitudinal network analysis on the observed collaborations through co-authorship over 15 years. Since co-authors possibly influence researchers to have interest changes, by focusing on researchers who could become the influencer, we propose a stochastic actor-oriented model of bipartite (two-mode) author-topic networks from article metadata. Information of scientific fields or topics of article contents, which could represent the interests of researchers, are often unavailable in the metadata. Topic absence issue differentiates this work with other studies on collaboration dynamics from article metadata of title-abstract and author properties. Therefore, our works also include procedures to extract and map clustered keywords as topic substitution of research interests. Then, the next step is to generate panel-waves of co-author networks and bipartite author-topic networks for the longitudinal analysis. The proposed model is used to find the driving factors of co-authoring collaboration with the focus on researcher behaviors in interest changes. This paper investigates the dynamics in an academic social network setting using selected metadata of publicly-available crawled articles in interrelated domains of “natural language processing” and “information extraction”. Based on the evidence of network evolution, researchers have a conformed tendency to co-author behaviors in publishing articles and exploring topics. Our results indicate the processes of selection and influence in forming co-author ties contribute some levels of social pressure to researchers. Our findings also discussed on how the co-author pressure accelerates the changes of interests and behaviors of the researchers.

Suggested Citation

  • Diana Purwitasari & Chastine Fatichah & Surya Sumpeno & Christian Steglich & Mauridhi Hery Purnomo, 2020. "Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1407-1443, March.
  • Handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-019-03342-2
    DOI: 10.1007/s11192-019-03342-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03342-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03342-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosmulski, Marek, 2012. "The order in the lists of authors in multi-author papers revisited," Journal of Informetrics, Elsevier, vol. 6(4), pages 639-644.
    2. Alireza Abbasi & Liaquat Hossain & Shahadat Uddin & Kim J. R. Rasmussen, 2011. "Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 687-710, November.
    3. Samreen Ayaz & Nayyer Masood & Muhammad Arshad Islam, 2018. "Predicting scientific impact based on h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 993-1010, March.
    4. Shibayama, Sotaro, 2019. "Sustainable development of science and scientists: Academic training in life science labs," Research Policy, Elsevier, vol. 48(3), pages 676-692.
    5. Hajdeja Iglič & Patrick Doreian & Luka Kronegger & Anuška Ferligoj, 2017. "With whom do researchers collaborate and why?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 153-174, July.
    6. Li, Huajiao & An, Haizhong & Wang, Yue & Huang, Jiachen & Gao, Xiangyun, 2016. "Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 657-669.
    7. Meho, Lokman I., 2019. "Using Scopus’s CiteScore for assessing the quality of computer science conferences," Journal of Informetrics, Elsevier, vol. 13(1), pages 419-433.
    8. Ashkan Ebadi & Andrea Schiffauerova, 2015. "On the Relation between the Small World Structure and Scientific Activities," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    9. Hornik, Kurt & Feinerer, Ingo & Kober, Martin & Buchta, Christian, 2012. "Spherical k-Means Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i10).
    10. Xiangjie Kong & Huizhen Jiang & Wei Wang & Teshome Megersa Bekele & Zhenzhen Xu & Meng Wang, 2017. "Exploring dynamic research interest and academic influence for scientific collaborator recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 369-385, October.
    11. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    12. Olesia Iefremova & Kamil Wais & Marcin Kozak, 2018. "Biographical articles in scientific literature: analysis of articles indexed in Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1695-1719, December.
    13. Bozeman, Barry & Corley, Elizabeth, 2004. "Scientists' collaboration strategies: implications for scientific and technical human capital," Research Policy, Elsevier, vol. 33(4), pages 599-616, May.
    14. Tom Z. J. Fu & Qianqian Song & Dah Ming Chiu, 2014. "The academic social network," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 203-239, October.
    15. Anuška Ferligoj & Luka Kronegger & Franc Mali & Tom A. B. Snijders & Patrick Doreian, 2015. "Scientific collaboration dynamics in a national scientific system," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 985-1012, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    2. Neelu Chaudhary & Hardeo Kumar Thakur & Rinky Dwivedi, 2022. "An ensemble model to optimize modularity in dynamic bipartite networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2248-2260, October.
    3. Xiaomei Bai & Fuli Zhang & Jinzhou Li & Zhong Xu & Zeeshan Patoli & Ivan Lee, 2021. "Quantifying scientific collaboration impact by exploiting collaboration-citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7993-8008, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrej Kastrin & Jelena Klisara & Borut Lužar & Janez Povh, 2017. "Analysis of Slovenian research community through bibliographic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 791-813, February.
    2. Graddy-Reed, Alexandra & Lanahan, Lauren & D'Agostino, Jesse, 2021. "Training across the academy: The impact of R&D funding on graduate students," Research Policy, Elsevier, vol. 50(5).
    3. Corsini, Alberto & Pezzoni, Michele & Visentin, Fabiana, 2022. "What makes a productive Ph.D. student?," Research Policy, Elsevier, vol. 51(10).
    4. Chin-Chang Tsai & Elizabeth A. Corley & Barry Bozeman, 2016. "Collaboration experiences across scientific disciplines and cohorts," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 505-529, August.
    5. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2019. "A gender analysis of top scientists’ collaboration behavior: evidence from Italy," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 405-418, August.
    6. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    7. Nataliya Matveeva & Anuška Ferligoj, 2020. "Scientific collaboration in Russian universities before and after the excellence initiative Project 5-100," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2383-2407, September.
    8. Tolga Yuret, 2020. "Co-worker network: How closely are researchers who published in the top five economics journals related?," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2301-2317, September.
    9. Dennis Essers & Francesco Grigoli & Evgenia Pugacheva, 2022. "Network effects and research collaborations: evidence from IMF Working Paper co-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7169-7192, December.
    10. Wu, Leyan & Yi, Fan & Bu, Yi & Lu, Wei & Huang, Yong, 2024. "Toward scientific collaboration: A cost-benefit perspective," Research Policy, Elsevier, vol. 53(2).
    11. Hajdeja Iglič & Patrick Doreian & Luka Kronegger & Anuška Ferligoj, 2017. "With whom do researchers collaborate and why?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 153-174, July.
    12. Tingcan Ma & Ruinan Li & Guiyan Ou & Mingliang Yue, 2018. "Topic based research competitiveness evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 789-803, November.
    13. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    14. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    15. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    16. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    17. Belén Álvarez-Bornstein & Adrián A. Díaz-Faes & María Bordons, 2019. "What characterises funded biomedical research? Evidence from a basic and a clinical domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 805-825, May.
    18. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    19. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    20. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).

    More about this item

    Keywords

    Longitudinal network analysis; Scientific collaboration dynamics; Research interest changes; One mode co-author network; Bipartite (two-mode) author-topic network; Stochastic actor-oriented model;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-019-03342-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.