IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v101y2014i1d10.1007_s11192-014-1356-x.html
   My bibliography  Save this article

The academic social network

Author

Listed:
  • Tom Z. J. Fu

    (Illinois at Singapore Pte Ltd, Advanced Digital Sciences Center (ADSC))

  • Qianqian Song

    (The Chinese University of Hong Kong)

  • Dah Ming Chiu

    (The Chinese University of Hong Kong)

Abstract

By means of their academic publications, authors form a social network. Instead of sharing casual thoughts and photos (as in Facebook), authors select co-authors and reference papers written by other authors. Thanks to various efforts (such as Microsoft Academic Search and DBLP), the data necessary for analyzing the academic social network is becoming more available on the Internet. What type of information and queries would be useful for users to discover, beyond the search queries already available from services such as Google Scholar? In this paper, we explore this question by defining a variety of ranking metrics on different entities—authors, publication venues, and institutions. We go beyond traditional metrics such as paper counts, citations, and h-index. Specifically, we define metrics such as influence, connections, and exposure for authors. An author gains influence by receiving more citations, but also citations from influential authors. An author increases his or her connections by co-authoring with other authors, and especially from other authors with high connections. An author receives exposure by publishing in selective venues where publications have received high citations in the past, and the selectivity of these venues also depends on the influence of the authors who publish there. We discuss the computation aspects of these metrics, and the similarity between different metrics. With additional information of author-institution relationships, we are able to study institution rankings based on the corresponding authors’ rankings for each type of metric as well as different domains. We are prepared to demonstrate these ideas with a web site ( http://pubstat.org ) built from millions of publications and authors.

Suggested Citation

  • Tom Z. J. Fu & Qianqian Song & Dah Ming Chiu, 2014. "The academic social network," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 203-239, October.
  • Handle: RePEc:spr:scient:v:101:y:2014:i:1:d:10.1007_s11192-014-1356-x
    DOI: 10.1007/s11192-014-1356-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1356-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1356-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Philip Ball, 2005. "Index aims for fair ranking of scientists," Nature, Nature, vol. 436(7053), pages 900-900, August.
    3. Loet Leydesdorff & Lutz Bornmann, 2011. "How fractional counting of citations affects the impact factor: Normalization in terms of differences in citation potentials among fields of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 217-229, February.
    4. Ludo Waltman & Nees Jan van Eck, 2010. "The relation between Eigenfactor, audience factor, and influence weight," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1476-1486, July.
    5. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    6. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    7. Loet Leydesdorff & Jung C. Shin, 2011. "How to evaluate universities in terms of their relative citation impacts: Fractional counting of citations and the normalization of differences among disciplines," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(6), pages 1146-1155, June.
    8. Michel Zitt & Henry Small, 2008. "Modifying the journal impact factor by fractional citation weighting: The audience factor," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(11), pages 1856-1860, September.
    9. Ludo Waltman & Nees Jan van Eck, 2010. "The relation between Eigenfactor, audience factor, and influence weight," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1476-1486, July.
    10. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    2. Ezgi Akar & Sona Mardikyan, 2018. "User Roles and Contribution Patterns in Online Communities: A Managerial Perspective," SAGE Open, , vol. 8(3), pages 21582440187, August.
    3. Jiancheng Guan & He Wei, 2015. "A bilateral comparison of research performance at an institutional level," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 147-173, July.
    4. Diana Purwitasari & Chastine Fatichah & Surya Sumpeno & Christian Steglich & Mauridhi Hery Purnomo, 2020. "Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1407-1443, March.
    5. Ralf Bebenroth & Kashif Ahmed, 2021. "Japanese firms' overpayments for cross‐border acquisitions," International Finance, Wiley Blackwell, vol. 24(2), pages 257-273, August.
    6. Panagopoulos, George & Tsatsaronis, George & Varlamis, Iraklis, 2017. "Detecting rising stars in dynamic collaborative networks," Journal of Informetrics, Elsevier, vol. 11(1), pages 198-222.
    7. Zoller, Daniel & Doerfel, Stephan & Jäschke, Robert & Stumme, Gerd & Hotho, Andreas, 2016. "Posted, visited, exported: Altmetrics in the social tagging system BibSonomy," Journal of Informetrics, Elsevier, vol. 10(3), pages 732-749.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludo Waltman & Erjia Yan & Nees Jan Eck, 2011. "A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 301-314, October.
    2. P. Dorta-González & M. I. Dorta-González, 2013. "Comparing journals from different fields of science and social science through a JCR subject categories normalized impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 645-672, May.
    3. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    4. Waltman, Ludo & van Eck, Nees Jan & van Leeuwen, Thed N. & Visser, Martijn S., 2013. "Some modifications to the SNIP journal impact indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 272-285.
    5. Waltman, Ludo & van Eck, Nees Jan, 2013. "A systematic empirical comparison of different approaches for normalizing citation impact indicators," Journal of Informetrics, Elsevier, vol. 7(4), pages 833-849.
    6. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    7. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    8. Loet Leydesdorff & Ping Zhou & Lutz Bornmann, 2013. "How can journal impact factors be normalized across fields of science? An assessment in terms of percentile ranks and fractional counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(1), pages 96-107, January.
    9. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    10. Bornmann, Lutz & Marx, Werner, 2015. "Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 408-418.
    11. Loet Leydesdorff, 2013. "An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 35-55, January.
    12. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    13. Dorta-González, P. & Dorta-González, M.I., 2013. "Impact maturity times and citation time windows: The 2-year maximum journal impact factor," Journal of Informetrics, Elsevier, vol. 7(3), pages 593-602.
    14. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    15. Dorta-González, Pablo & Dorta-González, María Isabel & Santos-Peñate, Dolores Rosa & Suárez-Vega, Rafael, 2014. "Journal topic citation potential and between-field comparisons: The topic normalized impact factor," Journal of Informetrics, Elsevier, vol. 8(2), pages 406-418.
    16. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    17. Bornmann, Lutz & Haunschild, Robin, 2016. "Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator," Journal of Informetrics, Elsevier, vol. 10(3), pages 875-887.
    18. Aksnes, Dag W. & Schneider, Jesper W. & Gunnarsson, Magnus, 2012. "Ranking national research systems by citation indicators. A comparative analysis using whole and fractionalised counting methods," Journal of Informetrics, Elsevier, vol. 6(1), pages 36-43.
    19. Loet Leydesdorff, 2012. "Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 355-365, August.
    20. Cristian Colliander & Per Ahlgren, 2019. "Comparison of publication-level approaches to ex-post citation normalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 283-300, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:101:y:2014:i:1:d:10.1007_s11192-014-1356-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.