IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v114y2018i3d10.1007_s11192-017-2628-z.html
   My bibliography  Save this article

Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory

Author

Listed:
  • Tanmoy Chakraborty

    () (Indraprastha Institute of Information Technology, Delhi (IIIT-D))

Abstract

Abstract The tremendous advances in computer science in the last few decades have provided the platform to address and solve complex problems using interdisciplinary research. In this paper, we investigate how the extent of interdisciplinarity in computer science domain (which is further divided into 24 research fields) has changed over the last 50 years. To this end, we collect a massive bibliographic dataset with rich metadata information. We start with quantifying interdisciplinarity of a field in terms of the diversity of topics and citations. We then analyze the effect of interdisciplinary research on the scientific impact of individual fields and observe that highly disciplinary and highly interdisciplinary papers in general have a low scientific impact; remarkably those that are able to strike a balance between the two extremes eventually land up having the highest impact. Further, we study the reciprocity among fields through citation interactions and notice that links from one field to related and citation-intensive fields (fields producing large number of citations) are reciprocated heavily. A systematic analysis of the citation interactions reveals the life trajectory of a research field, which generally undergoes three phases—a growing phase, a matured phase and an interdisciplinary phase. The combination of metrics and empirical observations presented here provides general benchmarks for future studies of interdisciplinary research activities in other domains of science.

Suggested Citation

  • Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
  • Handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2628-z
    DOI: 10.1007/s11192-017-2628-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2628-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    2. repec:spr:scient:v:54:y:2002:i:3:d:10.1023_a:1016078331752 is not listed on IDEAS
    3. Nicolas Carayol & Thuc Uyen Nguyen Thi, 2005. "Why do academic scientists engage in interdisciplinary research?," Research Evaluation, Oxford University Press, vol. 14(1), pages 70-79, April.
    4. repec:spr:scient:v:72:y:2007:i:1:d:10.1007_s11192-007-1700-5 is not listed on IDEAS
    5. George Vrettas & Mark Sanderson, 2015. "Conferences versus journals in computer science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2674-2684, December.
    6. repec:spr:scient:v:51:y:2001:i:1:d:10.1023_a:1010589300829 is not listed on IDEAS
    7. repec:spr:scient:v:51:y:2001:i:1:d:10.1023_a:1010529114941 is not listed on IDEAS
    8. repec:spr:scient:v:82:y:2010:i:2:d:10.1007_s11192-009-0041-y is not listed on IDEAS
    9. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    10. repec:spr:scient:v:101:y:2014:i:1:d:10.1007_s11192-014-1356-x is not listed on IDEAS
    11. Dinesh Pradhan & Partha Sarathi Paul & Umesh Maheswari & Subrata Nandi & Tanmoy Chakraborty, 2017. "$$C^3$$ C 3 -index: a PageRank based multi-faceted metric for authors’ performance measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 253-273, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2628-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.