IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v122y2020i1d10.1007_s11192-019-03279-6.html
   My bibliography  Save this article

Not all areas are equal: analysis of citations in information security research

Author

Listed:
  • Steffen Wendzel

    (Worms University of Applied Sciences
    Fraunhofer FKIE)

  • Cédric Lévy-Bencheton

    (Cetome)

  • Luca Caviglione

    (Institute for Applied Mathematics and Information Technologies)

Abstract

The understanding of the inner workings of a research community is essential to evaluate the impact of an author as well as to decide where and how to publish results. One of the key metrics is the number of citations that a publication receives. In parallel, information security is now a key and strategic area, partially fueled by the advent of the Internet of Things (IoT) and the need of pursuing cybercriminals by using digital forensics techniques. Therefore, this paper analyzes several factors influencing the number of citations in the domain of information security, such as differences between journal and conference publications, or the impact of the number of pages and the length of the abstract. To obtain quantitative results, we investigated papers of six sub-disciplines, i.e., anonymity and privacy, cryptography, information hiding, IoT and Cyber-Physical System security, digital forensics and incident response, and network security. For each sub-domain, we used metadata of 5000 publications collected from IEEE-Xplore. Results indicate some clear behaviors, for instance, papers tend to receive more citations when their abstract is longer and the number of references positively influences the performance of the work.

Suggested Citation

  • Steffen Wendzel & Cédric Lévy-Bencheton & Luca Caviglione, 2020. "Not all areas are equal: analysis of citations in information security research," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 267-286, January.
  • Handle: RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03279-6
    DOI: 10.1007/s11192-019-03279-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03279-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03279-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Si Shen & Ronald Rousseau & Dongbo Wang, 2018. "Do papers with an institutional e-mail address receive more citations than those with a non-institutional one?," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1039-1050, May.
    2. João M. Fernandes & Miguel P. Monteiro, 2017. "Evolution in the number of authors of computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 529-539, February.
    3. Sun, Xiaoling & Ding, Kun & Lin, Yuan, 2016. "Mapping the evolution of scientific fields based on cross-field authors," Journal of Informetrics, Elsevier, vol. 10(3), pages 750-761.
    4. Myriam Dunn Cavelty, 2018. "Cybersecurity Research Meets Science and Technology Studies," Politics and Governance, Cogitatio Press, vol. 6(2), pages 22-30.
    5. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    6. Dalibor Fiala & Gabriel Tutoky, 2017. "Computer Science Papers in Web of Science: A Bibliometric Analysis," Publications, MDPI, vol. 5(4), pages 1-16, September.
    7. Lutz Bornmann & Loet Leydesdorff, 2018. "Count highly-cited papers instead of papers with h citations: use normalized citation counts and compare “like with like”!," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1119-1123, May.
    8. Munan Li, 2018. "Classifying and ranking topic terms based on a novel approach: role differentiation of author keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 77-100, July.
    9. Kayvan Kousha & Mike Thelwall, 2007. "Google Scholar citations and Google Web/URL citations: A multi‐discipline exploratory analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1055-1065, May.
    10. Waleed Iqbal & Junaid Qadir & Gareth Tyson & Adnan Noor Mian & Saeed-ul Hassan & Jon Crowcroft, 2019. "A bibliometric analysis of publications in computer networking research," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1121-1155, May.
    11. Bei-Ni Yan & Tian-Shyug Lee & Tsung-Pei Lee, 2015. "Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1285-1300, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    2. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    3. Domingo Docampo & Lawrence Cram, 2019. "Highly cited researchers: a moving target," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1011-1025, March.
    4. Ma, Chao & Li, Yiwei & Guo, Feng & Si, Kao, 2019. "The citation trap: Papers published at year-end receive systematically fewer citations," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 667-687.
    5. Kim, Kun & Park, Oun-joung & Yun, Seunghyun & Yun, Haejung, 2017. "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 362-369.
    6. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    7. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    8. Rachel Einecker & Andrew Kirby, 2020. "Climate Change: A Bibliometric Study of Adaptation, Mitigation and Resilience," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    9. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    10. Guo Chen & Jing Chen & Yu Shao & Lu Xiao, 2023. "Automatic noise reduction of domain-specific bibliographic datasets using positive-unlabeled learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1187-1204, February.
    11. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    12. Balázs Győrffy & Andrea Magda Nagy & Péter Herman & Ádám Török, 2018. "Factors influencing the scientific performance of Momentum grant holders: an evaluation of the first 117 research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 409-426, October.
    13. Mohamed Bouteraa & Elhachemi Tamma & Mohammed El Hafedh Aichouche & Sadok Achour & Suddin Lada & Rudy Ansar & Lim Ming Fook & Brahim Chekima, 2023. "International Joint Ventures’ Knowledge Acquisition: Critical Literature Review," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    14. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    15. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
    16. Sujit Bhattacharya & Ravinder Kumar & Shubham Singh, 2020. "Capturing the salient aspects of IoT research: A Social Network Analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 361-384, October.
    17. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    18. Aliakbar Pourhatami & Mohammad Kaviyani-Charati & Bahareh Kargar & Hamed Baziyad & Maryam Kargar & Carlos Olmeda-Gómez, 2021. "Mapping the intellectual structure of the coronavirus field (2000–2020): a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6625-6657, August.
    19. Farshad Amiraslani & Deirdre Dragovich, 2022. "A Review of Documentation: A Cross-Disciplinary Perspective," World, MDPI, vol. 3(1), pages 1-20, February.
    20. Sung Kim & Derek Hansen & Richard Helps, 2018. "Computing research in the academy: insights from theses and dissertations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 135-158, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03279-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.