IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i1d10.1007_s11192-024-05222-w.html
   My bibliography  Save this article

A three-dimensional framework for quantifying knowledge intersection intensity: from a micro perspective

Author

Listed:
  • Jianbing Ma

    (Chengdu University of Information Technology)

  • Kexin Yang

    (Chengdu University of Information Technology)

Abstract

Interdisciplinary interactions are crucial for generating high-impact knowledge and fostering practical innovations. Thus, it is important to assess the extent of disciplinary crossover and identify areas of intense interdisciplinary collaboration. Current research predominantly focuses on macro-level interdisciplinary measurements, emphasizing collaboration networks and citation analyses of literature. Still, there are limitations in effectively identifying interdisciplinary domains and exploring the fine-grained knowledge structures and intricate interaction mechanisms at a micro level. To address this, our paper proposes a three-dimensional analytical framework to explore disciplinary intersection points from the keyword level, achieving systematic quantification of interdisciplinary interaction intensity. This framework integrates semantic parsing, hierarchical structuring, and network analysis. It begins by employing semantic models to capture profound knowledge associations. Then, it quantifies the potential distances and dissemination capabilities of knowledge by analyzing direct and indirect disciplinary connections within hierarchical and network structures. Lastly, it employs entropy weighting to comprehensively and flexibly evaluate the strength of these interactions. The feasibility of this approach is demonstrated through cases involving Library and Information Science (LIS) and six other disciplines, showing the trend of broad and diversified expansion of disciplinary knowledge domains over time. Compared with traditional assessment indicators, our proposed methodology provides a dynamic and fine-grained perspective for evaluating interdisciplinary collaborations, aligning more closely with the intricacies of real-world academic ecosystems.

Suggested Citation

  • Jianbing Ma & Kexin Yang, 2025. "A three-dimensional framework for quantifying knowledge intersection intensity: from a micro perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(1), pages 367-398, January.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:1:d:10.1007_s11192-024-05222-w
    DOI: 10.1007/s11192-024-05222-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05222-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05222-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang-Son Pham & Bram Vancraeynest & Hanne Poelmans & Sadia Vancauwenbergh & Amr Ali-Eldin, 2023. "Identifying interdisciplinary research in research projects," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5521-5544, October.
    2. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
    3. Pertti Vakkari & Yu‐Wei Chang & Kalervo Järvelin, 2022. "Disciplinary contributions to research topics and methodology in Library and Information Science—Leading to fragmentation?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(12), pages 1706-1722, December.
    4. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    5. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    6. Pei-Chun Lee & Hsin-Ning Su & Te-Yi Chan, 2010. "Assessment of ontology-based knowledge network formation by Vector-Space Model," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 689-703, December.
    7. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    8. Lu Xiao & Guo Chen & Jianjun Sun & Shuguang Han & Chengzhi Zhang, 2016. "Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1085-1101, September.
    9. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    10. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    11. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    12. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    13. Maryam Nakhoda & Peter Whigham & Sander Zwanenburg, 2023. "Quantifying and addressing uncertainty in the measurement of interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(11), pages 6107-6127, November.
    14. Yu‐Wei Chang & Mu‐Hsuan Huang, 2012. "A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 22-33, January.
    15. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    16. Richard Van Noorden, 2015. "Interdisciplinary research by the numbers," Nature, Nature, vol. 525(7569), pages 306-307, September.
    17. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    18. Cristóbal Urbano & Jordi Ardanuy, 2020. "Cross-disciplinary collaboration versus coexistence in LIS serials: analysis of authorship affiliations in four European countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 575-602, July.
    19. Yu-Wei Chang & Mu-Hsuan Huang, 2012. "A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 22-33, January.
    20. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    21. Haiyun Xu & Ting Guo & Zenghui Yue & Lijie Ru & Shu Fang, 2016. "Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 583-601, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanrong Zhang & Wei Guo & Jian Ma & Zhonglin Fu & Zhixing Chang & Lei Wang, 2023. "Evolution analysis of cross-domain collaborative research topic: a case study of cognitive-based product conceptual design," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(12), pages 6695-6718, December.
    2. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    3. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    4. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    5. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    7. Gabriele Sampagnaro, 2023. "Keyword occurrences and journal specialization," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5629-5645, October.
    8. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    9. Pertti Vakkari & Kalervo Järvelin & Yu‐Wei Chang, 2023. "The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995–2015," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 811-827, July.
    10. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    11. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    12. Lina Xu & Steven Dellaportas & Jin Wang, 2022. "A study of interdisciplinary accounting research: analysing the diversity of cited references," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(2), pages 2131-2162, June.
    13. Zhao, Yi & Liu, Lifan & Zhang, Chengzhi, 2022. "Is coronavirus-related research becoming more interdisciplinary? A perspective of co-occurrence analysis and diversity measure of scientific articles," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    15. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    16. Shiyun Wang & Jin Mao & Yujie Cao & Gang Li, 2022. "Integrated knowledge content in an interdisciplinary field: identification, classification, and application," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6581-6614, November.
    17. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    18. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    19. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    20. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:1:d:10.1007_s11192-024-05222-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.