IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i2d10.1007_s13571-019-00204-y.html
   My bibliography  Save this article

A Robust Sharpe Ratio

Author

Listed:
  • Mahesh K.C

    (Institute of Management, Nirma University)

  • Arnab Kumar Laha

    (Indian Institute of Management Ahmedabad)

Abstract

Sharpe ratio is one of the widely used measures in the financial literature to compare two or more investment strategies. Since it is a ratio of the excess expected return of a portfolio to its standard deviation of returns, it is not robust against the presence of outliers. In this paper we propose a modification of the Sharpe ratio which is based on robust measures of location and scale. We investigate the properties of this proposed ratio under six alternative return distributions. It is seen that the modified Sharpe ratio performs better than the original Sharpe ratio in the presence of outliers. A real life stock market return data set is analyzed and the comparative performances of the two ratios are studied. The results indicate that modified Sharpe ratio may be a better measure for comparing different investment strategies. When downside risk is the only concern of the investors a modification of the Sharpe ratio known as Sortino ratio is often used. It is shown that the Sortino ratio is not robust and we propose a modified version of the same which is robust.

Suggested Citation

  • Mahesh K.C & Arnab Kumar Laha, 2021. "A Robust Sharpe Ratio," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 444-465, November.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-019-00204-y
    DOI: 10.1007/s13571-019-00204-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-019-00204-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-019-00204-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. John Knight & Stephen Satchell, 2005. "A Re-Examination of Sharpe's Ratio for Log-Normal Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 87-100.
    2. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    3. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    4. John Douglas (J.D.) Opdyke, 2007. "Comparing Sharpe ratios: So where are the p-values?," Journal of Asset Management, Palgrave Macmillan, vol. 8(5), pages 308-336, December.
    5. Nielsen, Lars Tyge & Vassalou, Maria, 2004. "Sharpe Ratios and Alphas in Continuous Time," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(1), pages 103-114, March.
    6. Falk, Michael, 1997. "Asymptotic independence of median and MAD," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 341-345, June.
    7. André F. Perold, 2004. "The Capital Asset Pricing Model," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 3-24, Summer.
    8. Bao, Yong & Ullah, Aman, 2006. "Moments of the estimated Sharpe ratio when the observations are not IID," Finance Research Letters, Elsevier, vol. 3(1), pages 49-56, March.
    9. Miller, Robert E. & Gehr, Adam K., 1978. "Sample Size Bias and Sharpe's Performance Measure: A Note," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(5), pages 943-946, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Douglas (J.D.) Opdyke, 2007. "Comparing Sharpe ratios: So where are the p-values?," Journal of Asset Management, Palgrave Macmillan, vol. 8(5), pages 308-336, December.
    2. Gabriel Frahm, 2018. "An Intersection–Union Test for the Sharpe Ratio," Risks, MDPI, vol. 6(2), pages 1-13, April.
    3. Adriano Koshiyama & Nick Firoozye, 2019. "Avoiding Backtesting Overfitting by Covariance-Penalties: an empirical investigation of the ordinary and total least squares cases," Papers 1905.05023, arXiv.org.
    4. Eric Benhamou, 2018. "Connecting Sharpe ratio and Student t-statistic, and beyond," Papers 1808.04233, arXiv.org, revised May 2019.
    5. Massimo Guidolin & Erwin Hansen & Martín Lozano-Banda, 2018. "Portfolio performance of linear SDF models: an out-of-sample assessment," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1425-1436, August.
    6. Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
    7. Eric Benhamou, 2021. "Distribution and statistics of the Sharpe Ratio," Working Papers hal-03207169, HAL.
    8. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    9. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    10. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    11. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    12. Sebastian Lobe & Christian Walkshäusl, 2016. "Vice versus virtue investing around the world," Review of Managerial Science, Springer, vol. 10(2), pages 303-344, March.
    13. Zhou, Jian & Nicholson, Joseph R., 2015. "Economic value of modeling covariance asymmetry for mixed-asset portfolio diversifications," Economic Modelling, Elsevier, vol. 45(C), pages 14-21.
    14. Niu, Cuizhen & Guo, Xu & McAleer, Michael & Wong, Wing-Keung, 2018. "Theory and application of an economic performance measure of risk," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 383-396.
    15. López, Raquel & Esparcia, Carlos, 2021. "Analysis of the performance of volatility-based trading strategies on scheduled news announcement days: An international equity market perspective," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 32-54.
    16. Kruthof, Garvin & Müller, Sebastian, 2025. "Can deep reinforcement learning beat 1N," Finance Research Letters, Elsevier, vol. 75(C).
    17. Fuertes, Ana-Maria & Zhao, Nan, 2023. "A Bayesian perspective on commodity style integration," Journal of Commodity Markets, Elsevier, vol. 30(C).
    18. Grose, Chris & Dasilas, Apostolos & Alexakis, Christos, 2014. "Performance persistence in fixed interest funds: With an eye on the post-debt crisis period," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 155-182.
    19. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    20. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-019-00204-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.