IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v99y2021i3d10.1007_s11134-021-09716-9.html
   My bibliography  Save this article

Stationary distribution convergence of the offered waiting processes in heavy traffic under general patience time scaling

Author

Listed:
  • Chihoon Lee

    (School of Business Stevens Institute of Technology)

  • Amy R. Ward

    (Booth School of Business The University of Chicago)

  • Heng-Qing Ye

    (Hong Kong Polytechnic University)

Abstract

We study a sequence of single server queues with customer abandonment ( $$GI/GI/1+GI$$ G I / G I / 1 + G I ) under heavy traffic. The patience time distributions vary with the sequence, which allows for a wider scope of applications. It is known Lee and Weerasinghe (Stochastic Process Appl 121(11):2507–2552, 2011) and Reed and Ward (Math Oper Res 33(3):606–644, 2008) that the sequence of scaled offered waiting time processes converges weakly to a reflecting diffusion process with nonlinear drift, as the traffic intensity approaches one. In this paper, we further show that the sequence of stationary distributions and moments of the offered waiting times, with diffusion scaling, converge to those of the limit diffusion process. This justifies the stationary performance of the diffusion limit as a valid approximation for the stationary performance of the $$GI/GI/1+GI$$ G I / G I / 1 + G I queue. Consequently, we also derive the approximation for the abandonment probability for the $$GI/GI/1+GI$$ G I / G I / 1 + G I queue in the stationary state.

Suggested Citation

  • Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2021. "Stationary distribution convergence of the offered waiting processes in heavy traffic under general patience time scaling," Queueing Systems: Theory and Applications, Springer, vol. 99(3), pages 283-303, December.
  • Handle: RePEc:spr:queues:v:99:y:2021:i:3:d:10.1007_s11134-021-09716-9
    DOI: 10.1007/s11134-021-09716-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-021-09716-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-021-09716-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heng-Qing Ye & David D. Yao, 2016. "Diffusion Limit of Fair Resource Control—Stationarity and Interchange of Limits," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1161-1207, November.
    2. J. E. Reed & Amy R. Ward, 2008. "Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 606-644, August.
    3. Chihoon Lee & Amy R. Ward, 2019. "Pricing and Capacity Sizing of a Service Facility: Customer Abandonment Effects," Production and Operations Management, Production and Operations Management Society, vol. 28(8), pages 2031-2043, August.
    4. Junfei Huang & Hanqin Zhang & Jiheng Zhang, 2016. "A Unified Approach to Diffusion Analysis of Queues with General Patience-Time Distributions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1135-1160, August.
    5. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2020. "Stationary distribution convergence of the offered waiting processes for $$GI/GI/1+GI$$GI/GI/1+GI queues in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 147-173, February.
    6. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    7. Hong Chen & Heng-Qing Ye, 2012. "Asymptotic Optimality of Balanced Routing," Operations Research, INFORMS, vol. 60(1), pages 163-179, February.
    8. Lee, Chihoon & Weerasinghe, Ananda, 2011. "Convergence of a queueing system in heavy traffic with general patience-time distributions," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2507-2552, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2020. "Stationary distribution convergence of the offered waiting processes for $$GI/GI/1+GI$$GI/GI/1+GI queues in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 147-173, February.
    2. Xin Liu, 2019. "Diffusion approximations for double-ended queues with reneging in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 49-87, February.
    3. Ari Arapostathis & Hassan Hmedi & Guodong Pang, 2021. "On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 772-796, May.
    4. Hassan Hmedi & Ari Arapostathis & Guodong Pang, 2022. "Uniform stability of some large-scale parallel server networks," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 509-552, December.
    5. Ananda Weerasinghe, 2014. "Diffusion Approximations for G / M / n + GI Queues with State-Dependent Service Rates," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 207-228, February.
    6. Junfei Huang & Hanqin Zhang & Jiheng Zhang, 2016. "A Unified Approach to Diffusion Analysis of Queues with General Patience-Time Distributions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1135-1160, August.
    7. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    8. Zhong, Zhiheng & Cao, Ping, 2023. "Balanced routing with partial information in a distributed parallel many-server queueing system," European Journal of Operational Research, Elsevier, vol. 304(2), pages 618-633.
    9. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    10. Chang Cao & J. G. Dai & Xiangyu Zhang, 2022. "State space collapse for multi-class queueing networks under SBP service policies," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 87-122, October.
    11. Amarjit Budhiraja & Xin Liu, 2012. "Stability of Constrained Markov-Modulated Diffusions," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 626-653, November.
    12. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    13. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    14. Itai Gurvich, 2014. "Validity of Heavy-Traffic Steady-State Approximations in Multiclass Queueing Networks: The Case of Queue-Ratio Disciplines," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 121-162, February.
    15. Ward Whitt & Wei You, 2020. "Heavy-traffic limits for stationary network flows," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 53-68, June.
    16. Rami Atar & Anup Biswas & Haya Kaspi, 2015. "Fluid Limits of G / G /1+ G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 683-702, March.
    17. Yue Hu & Carri W. Chan & Jing Dong, 2022. "Optimal Scheduling of Proactive Service with Customer Deterioration and Improvement," Management Science, INFORMS, vol. 68(4), pages 2533-2578, April.
    18. Ferrari, Giorgio, 2018. "On a Class of Singular Stochastic Control Problems for Reflected Diffusions," Center for Mathematical Economics Working Papers 592, Center for Mathematical Economics, Bielefeld University.
    19. Rami Atar & Isaac Keslassy & Gal Mendelson, 2019. "Replicate to the shortest queues," Queueing Systems: Theory and Applications, Springer, vol. 92(1), pages 1-23, June.
    20. Dinard van der Laan, 2015. "Assigning Multiple Job Types to Parallel Specialized Servers," Tinbergen Institute Discussion Papers 15-102/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:99:y:2021:i:3:d:10.1007_s11134-021-09716-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.