IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v46y2021i2p772-796.html
   My bibliography  Save this article

On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime

Author

Listed:
  • Ari Arapostathis

    (Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712)

  • Hassan Hmedi

    (Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712)

  • Guodong Pang

    (Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, College of Engineering, Pennsylvania State University, University Park, Pennsylvania 16802)

Abstract

We study ergodic properties of Markovian multiclass many-server queues that are uniform over scheduling policies and the size of the system. The system is heavily loaded in the Halfin–Whitt regime, and the scheduling policies are work conserving and preemptive. We provide a unified approach via a Lyapunov function method that establishes Foster–Lyapunov equations for both the limiting diffusion and the prelimit diffusion-scaled queuing processes simultaneously. We first study the limiting controlled diffusion and show that if the spare capacity (safety staffing) parameter is positive, the diffusion is exponentially ergodic uniformly over all stationary Markov controls, and the invariant probability measures have uniform exponential tails. This result is sharp because when there is no abandonment and the spare capacity parameter is negative, the controlled diffusion is transient under any Markov control. In addition, we show that if all the abandonment rates are positive, the invariant probability measures have sub-Gaussian tails regardless whether the spare capacity parameter is positive or negative. Using these results, we proceed to establish the corresponding ergodic properties for the diffusion-scaled queuing processes. In addition to providing a simpler proof of previous results in Gamarnik and Stolyar [Gamarnik D, Stolyar AL (2012) Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime: asymptotics of the stationary distribution. Queueing Systems 71(1–2):25–51], we extend these results to multiclass models with renewal arrival processes, albeit under the assumption that the mean residual life functions are bounded. For the Markovian model with Poisson arrivals, we obtain stronger results and show that the convergence to the stationary distribution is at an exponential rate uniformly over all work-conserving stationary Markov scheduling policies.

Suggested Citation

  • Ari Arapostathis & Hassan Hmedi & Guodong Pang, 2021. "On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 772-796, May.
  • Handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:772-796
    DOI: 10.1287/moor.2020.1087
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/moor.2020.1087
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2020.1087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heng-Qing Ye & David D. Yao, 2016. "Diffusion Limit of Fair Resource Control—Stationarity and Interchange of Limits," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1161-1207, November.
    2. J. Michael Harrison & Assaf Zeevi, 2004. "Dynamic Scheduling of a Multiclass Queue in the Halfin-Whitt Heavy Traffic Regime," Operations Research, INFORMS, vol. 52(2), pages 243-257, April.
    3. Ari Arapostathis & Guodong Pang, 2018. "Infinite-Horizon Average Optimality of the N-Network in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 838-866, August.
    4. Itai Gurvich, 2014. "Validity of Heavy-Traffic Steady-State Approximations in Multiclass Queueing Networks: The Case of Queue-Ratio Disciplines," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 121-162, February.
    5. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    6. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    7. Konstantopoulos, Takis & Last, Günter, 1999. "On the use of Lyapunov function methods in renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 165-178, January.
    8. Ward Whitt, 1992. "Understanding the Efficiency of Multi-Server Service Systems," Management Science, INFORMS, vol. 38(5), pages 708-723, May.
    9. Arapostathis, Ari & Pang, Guodong, 2019. "Infinite horizon asymptotic average optimality for large-scale parallel server networks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 283-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Hmedi & Ari Arapostathis & Guodong Pang, 2022. "Uniform stability of some large-scale parallel server networks," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 509-552, December.
    2. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    3. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    4. Josh Reed & Bo Zhang, 2017. "Managing capacity and inventory jointly for multi-server make-to-stock queues," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 61-94, June.
    5. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    6. Constantinos Maglaras & Assaf Zeevi, 2004. "Diffusion Approximations for a Multiclass Markovian Service System with “Guaranteed” and “Best-Effort” Service Levels," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 786-813, November.
    7. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    8. Constantinos Maglaras & Assaf Zeevi, 2005. "Pricing and Design of Differentiated Services: Approximate Analysis and Structural Insights," Operations Research, INFORMS, vol. 53(2), pages 242-262, April.
    9. Anton Braverman, 2020. "Steady-State Analysis of the Join-the-Shortest-Queue Model in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1069-1103, August.
    10. Zhong, Zhiheng & Cao, Ping, 2023. "Balanced routing with partial information in a distributed parallel many-server queueing system," European Journal of Operational Research, Elsevier, vol. 304(2), pages 618-633.
    11. Amy R. Ward & Mor Armony, 2013. "Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers," Operations Research, INFORMS, vol. 61(1), pages 228-243, February.
    12. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    13. O. Garnet & A. Mandelbaum & M. Reiman, 2002. "Designing a Call Center with Impatient Customers," Manufacturing & Service Operations Management, INFORMS, vol. 4(3), pages 208-227, October.
    14. A. J. E. M. Janssen & J. S. H. van Leeuwaarden & Bert Zwart, 2011. "Refining Square-Root Safety Staffing by Expanding Erlang C," Operations Research, INFORMS, vol. 59(6), pages 1512-1522, December.
    15. J. G. Dai & Tolga Tezcan, 2011. "State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 271-320, May.
    16. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    17. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    18. Itay Gurvich & Ward Whitt, 2009. "Scheduling Flexible Servers with Convex Delay Costs in Many-Server Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 237-253, June.
    19. Noah Gans & Yong-Pin Zhou, 2007. "Call-Routing Schemes for Call-Center Outsourcing," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 33-50, May.
    20. Ward Whitt, 2003. "How Multiserver Queues Scale with Growing Congestion-Dependent Demand," Operations Research, INFORMS, vol. 51(4), pages 531-542, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:772-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.