IDEAS home Printed from
   My bibliography  Save this article

Convergence of a queueing system in heavy traffic with general patience-time distributions


  • Lee, Chihoon
  • Weerasinghe, Ananda


We analyze a sequence of single-server queueing systems with impatient customers in heavy traffic. Our state process is the offered waiting time, and the customer arrival process has a state dependent intensity. Service times and customer patient-times are independent; i.i.d. with general distributions subject to mild constraints. We establish the heavy traffic approximation for the scaled offered waiting time process and obtain a diffusion process as the heavy traffic limit. The drift coefficient of this limiting diffusion is influenced by the sequence of patience-time distributions in a non-linear fashion. We also establish an asymptotic relationship between the scaled version of offered waiting time and queue-length. As a consequence, we obtain the heavy traffic limit of the scaled queue-length. We introduce an infinite-horizon discounted cost functional whose running cost depends on the offered waiting time and server idle time processes. Under mild assumptions, we show that the expected value of this cost functional for the n -th system converges to that of the limiting diffusion process as n tends to infinity.

Suggested Citation

  • Lee, Chihoon & Weerasinghe, Ananda, 2011. "Convergence of a queueing system in heavy traffic with general patience-time distributions," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2507-2552, November.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2507-2552

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Burdzy, Krzysztof & Kang, Weining & Ramanan, Kavita, 2009. "The Skorokhod problem in a time-dependent interval," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 428-452, February.
    2. Ren, Yao-Feng & Tian, Fan-Ji, 2003. "On the Rosenthal's inequality for locally square integrable martingales," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 107-116, March.
    3. O. Garnet & A. Mandelbaum & M. Reiman, 2002. "Designing a Call Center with Impatient Customers," Manufacturing & Service Operations Management, INFORMS, vol. 4(3), pages 208-227, October.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2507-2552. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.