IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i1d10.1007_s11135-024-01981-z.html
   My bibliography  Save this article

Review bombing: ideology-driven polarisation in online ratings: The case study of The Last of Us (part II)

Author

Listed:
  • Giulio Giacomo Cantone

    (University of Sussex)

  • Venera Tomaselli

    (University of Catania)

  • Valeria Mazzeo

    (Fondazione Bruno Kessler)

Abstract

A review bomb is a surge in online reviews, coordinated by a group of people willing to manipulate public opinions. This is a study on a prominent case of review bombing (n = 51,120) of the video game The Last of Us Part II, challenging the assumption that review bombing should be framed solely as misinformation. The impact of fake reviews is substantially small. Ideology-driven ratings associated with a conservative ideology are followed by a grassroots counter-bombing from progressives, aimed at mitigating the effects of the negative ratings. These factions are very similar in other metrics. Preventive measures are proposed.

Suggested Citation

  • Giulio Giacomo Cantone & Venera Tomaselli & Valeria Mazzeo, 2025. "Review bombing: ideology-driven polarisation in online ratings: The case study of The Last of Us (part II)," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 315-341, February.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:1:d:10.1007_s11135-024-01981-z
    DOI: 10.1007/s11135-024-01981-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-024-01981-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-024-01981-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    3. Sonia Livingstone, 2013. "The participation paradigm in audience research," LSE Research Online Documents on Economics 49630, London School of Economics and Political Science, LSE Library.
    4. repec:nas:journl:v:115:y:2018:p:9216-9221 is not listed on IDEAS
    5. Jordan T Moss & Peter J O’Connor, 2020. "Political correctness and the alt-right: The development of extreme political attitudes," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-22, October.
    6. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    7. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesper Akesson & Robert Hahn & Robert Metcalfe & Manuel Monti-Nussbaum, 2025. "The Impact of Fake Reviews on Demand and Welfare," Framed Field Experiments 00821, The Field Experiments Website.
    2. Wang, Qiang & Zhang, Wen & Li, Jian & Ma, Zhenzhong, 2023. "Complements or confounders? A study of effects of target and non-target features on online fraudulent reviewer detection," Journal of Business Research, Elsevier, vol. 167(C).
    3. Ko, Eunhee Emily & Bowman, Douglas, 2023. "Suspicious online product reviews: An empirical analysis of brand and product characteristics using Amazon data," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 898-911.
    4. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    5. Li, Yuanshuo & Zhang, Zili & Pedersen, Susanne & Liu, Xudong & Zhang, Ziqiong, 2023. "The influence of relative popularity on negative fake reviews: A case study on restaurant reviews," Journal of Business Research, Elsevier, vol. 162(C).
    6. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    7. Hung-Pin Shih & Pei-Chen Sung, 2021. "Addressing the Review-Based Learning and Private Information Approaches to Foster Platform Continuance," Information Systems Frontiers, Springer, vol. 23(3), pages 649-661, June.
    8. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    9. Dimitrios Tsekouras & Dominik Gutt & Irina Heimbach, 2024. "The robo bias in conversational reviews: How the solicitation medium anthropomorphism affects product rating valence and review helpfulness," Journal of the Academy of Marketing Science, Springer, vol. 52(6), pages 1651-1672, November.
    10. Mardumyan, Anna & Siret, Iris, 2023. "When review verification does more harm than good: How certified reviews determine customer–brand relationship quality," Journal of Business Research, Elsevier, vol. 160(C).
    11. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176, Cowles Foundation for Research in Economics, Yale University.
    12. Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
    13. Guo, Qiaozhen & Chen, Ying-Ju & Huang, Wei, 2022. "Dynamic pricing of new experience products with dual-channel social learning and online review manipulations," Omega, Elsevier, vol. 109(C).
    14. Warut Khern-am-nuai & Karthik Kannan & Hossein Ghasemkhani, 2018. "Extrinsic versus Intrinsic Rewards for Contributing Reviews in an Online Platform," Information Systems Research, INFORMS, vol. 29(4), pages 871-892, December.
    15. Plotkina, Daria & Munzel, Andreas & Pallud, Jessie, 2020. "Illusions of truth—Experimental insights into human and algorithmic detections of fake online reviews," Journal of Business Research, Elsevier, vol. 109(C), pages 511-523.
    16. Koukova, Nevena T. & Wang, Rebecca Jen-Hui & Isaac, Mathew S., 2023. "“If you loved our product”: Do conditional review requests harm retailer loyalty?," Journal of Retailing, Elsevier, vol. 99(1), pages 85-101.
    17. Liting Li & Haichao Zheng & Dongyu Chen & Bin Zhu, 2024. "Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 24(3), pages 1619-1658, September.
    18. Chatterjee, Sheshadri & Chaudhuri, Ranjan & Kumar, Ajay & Lu Wang, Cheng & Gupta, Shivam, 2023. "Impacts of consumer cognitive process to ascertain online fake review: A cognitive dissonance theory approach," Journal of Business Research, Elsevier, vol. 154(C).
    19. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    20. Costa Filho, Murilo & Nogueira Rafael, Diego & Salmonson Guimarães Barros, Lucia & Mesquita, Eduardo, 2023. "Mind the fake reviews! Protecting consumers from deception through persuasion knowledge acquisition," Journal of Business Research, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:1:d:10.1007_s11135-024-01981-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.