IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i1d10.1007_s11135-022-01382-0.html
   My bibliography  Save this article

Recent trends and proposed response strategies of international standards related to shipbuilding equipment big data integration platform

Author

Listed:
  • Jin-Hong Lim

    (International Standard Team, Korea Marine Equipment Research Institute)

  • Jae-Hwan Kim

    ((National) Korea Maritime and Ocean University)

  • Jun-Ho Huh

    ((National) Korea Maritime and Ocean University)

Abstract

In recent years, the major technology of smart ships in the shipbuilding and marine sectors focuses on data platforms, telecommunications, and cyber security issues, which can only be mounted on ships if they meet technical specifications and performance requirements defined by international standards, not problems solved through technological development. Norway and Japan are taking the lead in standard development in this field, and the Korea is also actively participating to reflect the opinions of the domestic industry in the international community. However, related academic research has not been carried out systematically. Therefore, this study attempts to analyze the current status and development of standards in data-related fields among subcommittees of Ships and Marine Technology (SC), which are covered by Technical Committee 8 (TC 8) of the International Organization for Standardization (ISO). Especially, the tasks for the relevant subjects will be performed by appealing to the international society through participation in various international conferences attended by the subcommittee of SC 6 ‘Navigation and Ship Operation’, SC 11 ‘Intermodal and Short Sea Shipping’ or a work group of WG 10 ‘Smart Shipping’ under TC 8, considering the inputs from local experts and Korean Agency for Technology and Standards. In addition, this study examines the current status and problems of data platforms in the shipbuilding and marine sectors, and examines the strategies of Korea and the time and cost benefits that follow them. To this end, this study implements literature review and empirical analysis. This paper collected and analyzed Big Data from January 1, 2020 to December 31, 2020, using the keywords ‘smart ship’, ‘autonomous ship’, ‘marine big data’, ‘data integration platform’, and ‘ship Big Data’. While the domestic shipbuilders were developing their own smart ship data integration platforms, they agreed that they would be vulnerable to global smart ship data integration platform initiatives and standard data development. If the data integration platform is developed or improved through unprecedented collaboration in the competitive systems of the shipbuilding industry, it is would improve the competitiveness of the Korean shipbuilding industry by applying the shipbuilders' Captive volume. Investment costs can also be reduced by leading international standardization and improving platforms for shipyards through joint responses from international standards (ISO).

Suggested Citation

  • Jin-Hong Lim & Jae-Hwan Kim & Jun-Ho Huh, 2023. "Recent trends and proposed response strategies of international standards related to shipbuilding equipment big data integration platform," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 863-884, February.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:1:d:10.1007_s11135-022-01382-0
    DOI: 10.1007/s11135-022-01382-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01382-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01382-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    2. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    3. Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
    4. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    5. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    6. Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
    7. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    8. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    9. Thomas P. Novak & Donna L. Hoffman, 2019. "Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects," Journal of the Academy of Marketing Science, Springer, vol. 47(2), pages 216-237, March.
    10. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    11. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    12. Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
    13. Sabrina Evans & Paolo Turrini, 2023. "Improving Strategic Decisions in Sequential Games by Exploiting Positional Similarity," Games, MDPI, vol. 14(3), pages 1-13, April.
    14. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    15. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    16. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    17. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    18. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    19. Jikai Jin & Vasilis Syrgkanis, 2023. "Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity," Papers 2311.12267, arXiv.org, revised Feb 2024.
    20. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:1:d:10.1007_s11135-022-01382-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.