IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i2d10.1007_s00291-023-00712-4.html
   My bibliography  Save this article

Data-driven customer acceptance for attended home delivery

Author

Listed:
  • Charlotte Köhler

    (European University Viadrina)

  • Ann Melissa Campbell

    (University of Iowa)

  • Jan Fabian Ehmke

    (Universität Wien)

Abstract

Home delivery services require the attendance of the customer during delivery. Hence, retailers and customers mutually agree on a delivery time window in the booking process. However, when a customer requests a time window, it is not clear how much accepting the ongoing request significantly reduces the availability of time windows for future customers. In this paper, we explore using historical order data to manage scarce delivery capacities efficiently. We propose a sampling-based customer acceptance approach that is fed with different combinations of these data to assess the impact of the current request on route efficiency and the ability to accept future requests. We propose a data-science process to investigate the best use of historical order data in terms of recency and amount of sampling data. We identify features that help to improve the acceptance decision as well as the retailer’s revenue. We demonstrate our approach with large amounts of real historical order data from two cities served by an online grocery in Germany.

Suggested Citation

  • Charlotte Köhler & Ann Melissa Campbell & Jan Fabian Ehmke, 2024. "Data-driven customer acceptance for attended home delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 295-330, June.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:2:d:10.1007_s00291-023-00712-4
    DOI: 10.1007/s00291-023-00712-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-023-00712-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-023-00712-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    2. Xinan Yang & Arne K. Strauss & Christine S. M. Currie & Richard Eglese, 2016. "Choice-Based Demand Management and Vehicle Routing in E-Fulfillment," Transportation Science, INFORMS, vol. 50(2), pages 473-488, May.
    3. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    4. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    5. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
    6. Nabila Azi & Michel Gendreau & Jean-Yves Potvin, 2012. "A dynamic vehicle routing problem with multiple delivery routes," Annals of Operations Research, Springer, vol. 199(1), pages 103-112, October.
    7. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    8. Catherine Cleophas & Jan Ehmke, 2014. "When Are Deliveries Profitable?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 153-163, June.
    9. Marlin W. Ulmer, 2020. "Dynamic Pricing and Routing for Same-Day Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1016-1033, July.
    10. Köhler, Charlotte & Ehmke, Jan Fabian & Campbell, Ann Melissa, 2020. "Flexible time window management for attended home deliveries," Omega, Elsevier, vol. 91(C).
    11. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    12. Pascal Hentenryck & Russell Bent & Eli Upfal, 2010. "Online stochastic optimization under time constraints," Annals of Operations Research, Springer, vol. 177(1), pages 151-183, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
    2. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    3. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    4. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    5. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2024. "An updated survey of attended home delivery and service problems with a focus on applications," Annals of Operations Research, Springer, vol. 343(2), pages 885-922, December.
    6. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2023. "A survey of attended home delivery and service problems with a focus on applications," 4OR, Springer, vol. 21(4), pages 547-583, December.
    7. van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
    9. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    10. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    11. María I. Restrepo & Frédéric Semet & Thomas Pocreau, 2019. "Integrated Shift Scheduling and Load Assignment Optimization for Attended Home Delivery," Transportation Science, INFORMS, vol. 53(4), pages 1150-1174, July.
    12. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    13. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    14. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    15. Yang, Xinan & Strauss, Arne K., 2017. "An approximate dynamic programming approach to attended home delivery management," European Journal of Operational Research, Elsevier, vol. 263(3), pages 935-945.
    16. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    17. Lang, Magdalena A.K. & Cleophas, Catherine & Ehmke, Jan Fabian, 2021. "Multi-criteria decision making in dynamic slotting for attended home deliveries," Omega, Elsevier, vol. 102(C).
    18. Magdalena A. K. Lang & Catherine Cleophas & Jan Fabian Ehmke, 2021. "Anticipative Dynamic Slotting for Attended Home Deliveries," SN Operations Research Forum, Springer, vol. 2(4), pages 1-39, December.
    19. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    20. Robert Klein & Jochen Mackert & Michael Neugebauer & Claudius Steinhardt, 2018. "A model-based approximation of opportunity cost for dynamic pricing in attended home delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 969-996, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:2:d:10.1007_s00291-023-00712-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.