IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v53y2016i2d10.1007_s12597-015-0238-1.html
   My bibliography  Save this article

Evolutionary technique based goal programming approach to chance constrained interval valued bilevel programming problems

Author

Listed:
  • Debjani Chakraborti

    (Narula Institute of Technology)

Abstract

The real world multiobjective decision environment involves great complexity and uncertainity. Many decision making problems often need to be modelled as a class of bilevel programming problems with inexact coefficients and chance constraints. To deal with these problems, a genetic algorithm (GA) based goal programming (GP) procedure for solving interval valued bilevel programming (BLP) problems in a large hierarchical decision making and planning organization is proposed. In the model formulation of the problem the chance constraints are converted to their deterministic equivalent using the notion of mean and variance. Further, the individual best and least solutions of the objectives of the decision makers (DMs) located at different hierarchical levels are determined by using GA method. The target intervals for achievement of each of the objectives as well as the target interval of the decision vector controlled by the upper-level DM are defined. Then, using interval arithmetic technique the interval valued objectives and control vectors are transformed into the conventional form of goal by introducing under- and over-deviational variables to each of them. In the solution process, both the aspects of minsum and minmax GP formulations are adopted to minimize the lower bounds of the regret intervals for goal achievement within the specified interval from the optimistic point of view. The potential use of the approach is illustrated by a numerical example

Suggested Citation

  • Debjani Chakraborti, 2016. "Evolutionary technique based goal programming approach to chance constrained interval valued bilevel programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 390-408, June.
  • Handle: RePEc:spr:opsear:v:53:y:2016:i:2:d:10.1007_s12597-015-0238-1
    DOI: 10.1007/s12597-015-0238-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-015-0238-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-015-0238-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flavell, RB, 1976. "A new goal programming formulation," Omega, Elsevier, vol. 4(6), pages 731-732.
    2. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    3. Inuiguchi, Masahiro & Kume, Yasufumi, 1991. "Goal programming problems with interval coefficients and target intervals," European Journal of Operational Research, Elsevier, vol. 52(3), pages 345-360, June.
    4. Kornbluth, Jonathan S. H. & Steuer, Ralph E., 1981. "Goal programming with linear fractional criteria," European Journal of Operational Research, Elsevier, vol. 8(1), pages 58-65, September.
    5. B Vitoriano & C Romero, 1999. "Extended interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1280-1283, December.
    6. Luhandjula, M.K., 2006. "Fuzzy stochastic linear programming: Survey and future research directions," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1353-1367, November.
    7. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    8. Bijay Baran Pal & Debjani Chakraborti, 2013. "Using genetic algorithm for solving quadratic bilevel programming problems via fuzzy goal programming," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 5(2), pages 172-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    2. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    3. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    4. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    5. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    6. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    7. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    8. Dey, Jayanta Kumar & Kar, Samarjit & Maiti, Manoranjan, 2005. "An interactive method for inventory control with fuzzy lead-time and dynamic demand," European Journal of Operational Research, Elsevier, vol. 167(2), pages 381-397, December.
    9. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
    10. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    11. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    12. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    13. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    14. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    15. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    16. J Aznar & F Guijarro, 2007. "Modelling aesthetic variables in the valuation of paintings: an interval goal programming approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 957-963, July.
    17. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    18. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    19. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    20. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:53:y:2016:i:2:d:10.1007_s12597-015-0238-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.