IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v25y2025i2d10.1007_s12351-024-00891-0.html
   My bibliography  Save this article

A novel inverse data envelopment analysis model with negative ratio data

Author

Listed:
  • Mehdi Soltanifar

    (Islamic Azad University)

  • Madjid Tavana

    (La Salle University
    University of Paderborn)

  • Vincent Charles

    (CENTRUM Católica Graduate Business School
    Pontifical Catholic University of Peru)

  • Mojtaba Ghiyasi

    (Shahrood University of Technology)

  • Hamid Sharafi

    (Islamic Azad University)

Abstract

Data envelopment analysis (DEA) is a mathematical programming method for evaluating the efficiency of a homogeneous set of decision-making units (DMUs) using multiple inputs and outputs. Inverse DEA estimates a DMU’s input (or output) when some or all DMU outputs (or inputs) are changed. Ratio DEA (DEA-R) combines DEA with ratio analysis to handle ratio data. Real-world DEA-R models often involve negative values for the inputs or outputs. This study presents a novel model for solving inverse DEA problems with negative ratio data for the first time. We present a real-life case study to demonstrate the applicability and efficacy of the DEA models proposed in this study.

Suggested Citation

  • Mehdi Soltanifar & Madjid Tavana & Vincent Charles & Mojtaba Ghiyasi & Hamid Sharafi, 2025. "A novel inverse data envelopment analysis model with negative ratio data," Operational Research, Springer, vol. 25(2), pages 1-34, June.
  • Handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-024-00891-0
    DOI: 10.1007/s12351-024-00891-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00891-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00891-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sepideh Kaffash & Reza Kazemi Matin & Mohammad Tajik, 2018. "A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks," Annals of Operations Research, Springer, vol. 264(1), pages 213-234, May.
    2. Portela, Maria C.A.S. & Thanassoulis, Emmanuel, 2010. "Malmquist-type indices in the presence of negative data: An application to bank branches," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1472-1483, July.
    3. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    4. K Kerstens & I Van de Woestyne, 2011. "Negative data in DEA: a simple proportional distance function approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1413-1419, July.
    5. Emrouznejad, Ali & Anouze, Abdel Latef & Thanassoulis, Emmanuel, 2010. "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 297-304, January.
    6. Mozaffari, Mohammad Reza & Dadkhah, Fatemeh & Jablonsky, Josef & Wanke, Peter Fernandes, 2020. "Finding efficient surfaces in DEA-R models," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Hadi-Vencheh, Abdollah & Foroughi, Ali Asghar & Soleimani-damaneh, Majid, 2008. "A DEA model for resource allocation," Economic Modelling, Elsevier, vol. 25(5), pages 983-993, September.
    8. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    9. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    10. Saeid Ghobadi & Saeid Jahangiri, 2015. "Inverse DEA: Review, Extension and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 805-824.
    11. Saeid Ghobadi & Khosro Soleimani-Chamkhorami & Ehsan Zanboori, 2023. "A novel inverse DEA model for restructuring DMUs with negative data," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 46(1), pages 118-132.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    13. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    14. J A Sharp & W Meng & W Liu, 2007. "A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1672-1677, December.
    15. Atefeh Younesi & Farhad Hosseinzadeh Lotfi & Manuel Arana-Jiménez, 2023. "Using slacks-based model to solve inverse DEA with integer intervals for input estimation," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 587-609, December.
    16. Ozren Despić & Mladen Despić & Joseph Paradi, 2007. "DEA-R: ratio-based comparative efficiency model, its mathematical relation to DEA and its use in applications," Journal of Productivity Analysis, Springer, vol. 28(1), pages 33-44, October.
    17. Mojtaba Ghiyasi, 2019. "Novel criterion models in the inverse DEA problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 35(1), pages 20-36.
    18. Mehdi Soltanifar & Hamid Sharafi, 2022. "A modified DEA cross efficiency method with negative data and its application in supplier selection," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 265-296, January.
    19. Lin, Sheng-Wei & Lu, Wen-Min, 2024. "Using inverse DEA and machine learning algorithms to evaluate and predict suppliers’ performance in the apple supply chain," International Journal of Production Economics, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    2. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    3. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    4. Amineh Ghazi & Farhad Hosseinzadeh Lotfi & Masoud Sanei, 2020. "Hybrid efficiency measurement and target setting based on identifying defining hyperplanes of the PPS with negative data," Operational Research, Springer, vol. 20(2), pages 1055-1092, June.
    5. Kao, Chiang, 2022. "Measuring efficiency in a general production possibility set allowing for negative data: An extension and a focus on returns to scale," European Journal of Operational Research, Elsevier, vol. 296(1), pages 267-276.
    6. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    7. Mohammad Izadikhah & Reza Farzipoor Saen & Razieh Roostaee, 2018. "How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis?," Annals of Operations Research, Springer, vol. 269(1), pages 241-267, October.
    8. Sepideh Kaffash & Reza Kazemi Matin & Mohammad Tajik, 2018. "A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks," Annals of Operations Research, Springer, vol. 264(1), pages 213-234, May.
    9. Martin Branda, 2016. "Mean-value at risk portfolio efficiency: approaches based on data envelopment analysis models with negative data and their empirical behaviour," 4OR, Springer, vol. 14(1), pages 77-99, March.
    10. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    11. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    12. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    13. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    14. Petridis, Konstantinos & Tampakoudis, Ioannis & Drogalas, George & Kiosses, Nikolaos, 2022. "A Support Vector Machine model for classification of efficiency: An application to M&A," Research in International Business and Finance, Elsevier, vol. 61(C).
    15. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    16. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    17. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    18. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    19. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    20. Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-024-00891-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.