IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i3d10.1007_s12351-021-00642-5.html
   My bibliography  Save this article

An integrated fleet planning model with empty vehicle repositioning for an intermodal transportation system

Author

Listed:
  • Adil Baykasoğlu

    (Dokuz Eylül University)

  • Nurhan Dudaklı

    (Dokuz Eylül University)

  • Kemal Subulan

    (Dokuz Eylül University)

  • A. Serdar Taşan

    (Dokuz Eylül University)

Abstract

Fleet planning problems in intermodal transportation represent one of the most important problems in logistics. In addition to the integration of various sub-problems interrelated at different planning levels, i.e., strategic, tactical, and operational, the inclusion of multiple modes, resources, and multiple actors in intermodal transportation systems makes fleet planning more complex in comparison with unimodal systems. The present paper proposes a holistic fleet planning approach, which integrates various decisions such as freight planning (transport mode, service type and route selection), fleet composition and allocation, empty vehicle repositions, fleet expansion/reduction and outsourcing. A comprehensive mixed-integer linear programming (MILP) model is developed for an international logistics company, which operates a large intermodal network in Europe. The computational results of the case study have shown that application of a reallocation strategy may provide cost reduction up to 10% for the logistics company. Considering the existing situation of the company, outsourcing can be reduced up to 30%, and fleet utilization can be increased by 5% by applying the proposed model. The extensive case study also shows that effective and efficient fleet plans can be generated through the proposed MILP model.

Suggested Citation

  • Adil Baykasoğlu & Nurhan Dudaklı & Kemal Subulan & A. Serdar Taşan, 2022. "An integrated fleet planning model with empty vehicle repositioning for an intermodal transportation system," Operational Research, Springer, vol. 22(3), pages 2063-2098, July.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-021-00642-5
    DOI: 10.1007/s12351-021-00642-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-021-00642-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-021-00642-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George J. Beaujon & Mark A. Turnquist, 1991. "A Model for Fleet Sizing and Vehicle Allocation," Transportation Science, INFORMS, vol. 25(1), pages 19-45, February.
    2. Warren B. Powell & Yosef Sheffi, 1989. "OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry," Operations Research, INFORMS, vol. 37(1), pages 12-29, February.
    3. Vanga, Ratnaji & Venkateswaran, Jayendran, 2020. "Fleet sizing of reusable articles under uncertain demand and turnaround times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 566-582.
    4. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    5. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    6. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    7. List, George F. & Wood, Bryan & Nozick, Linda K. & Turnquist, Mark A. & Jones, Dean A. & Kjeldgaard, Edwin A. & Lawton, Craig R., 2003. "Robust optimization for fleet planning under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 209-227, May.
    8. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    9. Milenković, Miloš S. & Bojović, Nebojša J. & Švadlenka, Libor & Melichar, Vlastimil, 2015. "A stochastic model predictive control to heterogeneous rail freight car fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 162-198.
    10. Adil Baykasoğlu & Kemal Subulan, 2019. "A fuzzy-stochastic optimization model for the intermodal fleet management problem of an international transportation company," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(8), pages 777-824, November.
    11. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    12. Sayarshad, Hamid R. & Gao, H. Oliver, 2020. "Optimizing dynamic switching between fixed and flexible transit services with an idle-vehicle relocation strategy and reductions in emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 198-214.
    13. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    14. Nossack, Jenny & Pesch, Erwin, 2013. "A truck scheduling problem arising in intermodal container transportation," European Journal of Operational Research, Elsevier, vol. 230(3), pages 666-680.
    15. Hjortnaes, T. & Wiegmans, B. & Negenborn, R.R. & Zuidwijk, R.A. & Klijnhout, R., 2017. "Minimizing cost of empty container repositioning in port hinterlands, while taking repair operations into account," Journal of Transport Geography, Elsevier, vol. 58(C), pages 209-219.
    16. Chen, Rongying & Dong, Jing-Xin & Lee, Chung-Yee, 2016. "Pricing and competition in a shipping market with waste shipments and empty container repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 32-55.
    17. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    18. Wang, Xinchang & Meng, Qiang, 2017. "Discrete intermodal freight transportation network design with route choice behavior of intermodal operators," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 76-104.
    19. Jansen, Benjamin & Swinkels, Pieter C. J. & Teeuwen, Geert J. A. & van Antwerpen de Fluiter, Babette & Fleuren, Hein A., 2004. "Operational planning of a large-scale multi-modal transportation system," European Journal of Operational Research, Elsevier, vol. 156(1), pages 41-53, July.
    20. Zhang, M. & Janic, M. & Tavasszy, L.A., 2015. "A freight transport optimization model for integrated network, service, and policy design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 61-76.
    21. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    22. Jianwei Ren & Chunhua Chen & Jian Gao & Chenxi Feng, 2020. "An optimization model for fleet sizing and empty pallet allocation considering CO2 emissions," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-16, February.
    23. William W. Williams & Oscar S. Fowler, 1980. "Minimum Cost Fleet Sizing for a University Motor Pool," Interfaces, INFORMS, vol. 10(3), pages 21-29, June.
    24. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    25. José Carbajal & Alan Erera & Martin Savelsbergh, 2013. "Balancing fleet size and repositioning costs in LTL trucking," Annals of Operations Research, Springer, vol. 203(1), pages 235-254, March.
    26. Dong, Jing-Xin & Song, Dong-Ping, 2009. "Container fleet sizing and empty repositioning in liner shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 860-877, November.
    27. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    28. Kochel, Peter & Kunze, Sophie & Nielander, Ulf, 2003. "Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 443-459, January.
    29. Gajpal, Yuvraj & Nourelfath, Mustapha, 2015. "Two efficient heuristics to solve the integrated load distribution and production planning problem," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 204-214.
    30. Repolho, Hugo M. & Church, Richard L. & Antunes, António P., 2016. "Optimizing station location and fleet composition for a high-speed rail line," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 437-452.
    31. Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2017. "Fleet and revenue management in car rental companies: A literature review and an integrated conceptual framework," Omega, Elsevier, vol. 71(C), pages 11-26.
    32. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    33. Choong, Sook Tying & Cole, Michael H. & Kutanoglu, Erhan, 2002. "Empty container management for intermodal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 423-438, November.
    34. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.
    35. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    36. Jacques Guélat & Michael Florian & Teodor Gabriel Crainic, 1990. "A Multimode Multiproduct Network Assignment Model for Strategic Planning of Freight Flows," Transportation Science, INFORMS, vol. 24(1), pages 25-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    2. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    3. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    4. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.
    5. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    6. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    7. Kolar, Petr & Schramm, Hans-Joachim & Prockl, Günter, 2018. "Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland," Journal of Transport Geography, Elsevier, vol. 69(C), pages 73-82.
    8. D-P Song, 2007. "Characterizing optimal empty container reposition policy in periodic-review shuttle service systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 122-133, January.
    9. George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
    10. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    11. Najafi, Mehdi & Zolfagharinia, Hossein, 2021. "Pricing and quality setting strategy in maritime transportation: Considering empty repositioning and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Song, Dong-Ping & Dong, Jing-Xin, 2011. "Effectiveness of an empty container repositioning policy with flexible destination ports," Transport Policy, Elsevier, vol. 18(1), pages 92-101, January.
    13. van Riessen, B. & Negenborn, R.R. & Dekker, R. & Lodewijks, G., 2013. "Impact and relevance of transit disturbances on planning in intermodal container networks," Econometric Institute Research Papers EI 2013-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Sina Mohri, Seyed & Thompson, Russell, 2022. "Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 59-77.
    15. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    16. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    17. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Klosterhalfen, S.T. & Kallrath, J. & Fischer, G., 2014. "Rail car fleet design: Optimization of structure and size," International Journal of Production Economics, Elsevier, vol. 157(C), pages 112-119.
    19. Vanga, Ratnaji & Venkateswaran, Jayendran, 2020. "Fleet sizing of reusable articles under uncertain demand and turnaround times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 566-582.
    20. Xing, Xinjie & Drake, Paul R. & Song, Dongping & Zhou, Yang, 2019. "Tank Container Operators’ profit maximization through dynamic operations planning integrated with the quotation-booking process under multiple uncertainties," European Journal of Operational Research, Elsevier, vol. 274(3), pages 924-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-021-00642-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.