IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3260-9.html
   My bibliography  Save this article

Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective

Author

Listed:
  • Mehmet Baran Ulak

    (FAMU–FSU College of Engineering)

  • Ayberk Kocatepe

    (FAMU–FSU College of Engineering)

  • Lalitha Madhavi Konila Sriram

    (FAMU–FSU College of Engineering)

  • Eren Erman Ozguven

    (FAMU–FSU College of Engineering)

  • Reza Arghandeh

    (FAMU–FSU College of Engineering)

Abstract

Natural disasters have devastating effects on the infrastructure and disrupt every aspect of daily life in the regions they hit. To alleviate problems caused by these disasters, first an impact assessment is needed. As such, this paper focuses on a two-step methodology to identify the impact of Hurricane Hermine on the City of Tallahassee, the capital of Florida. The regional and socioeconomic variations in the Hermine’s impact were studied via spatially and statistically analyzing power outages. First step includes a spatial analysis to illustrate the magnitude of customers affected by power outages together with a clustering analysis. This step aims to determine whether the customers affected from outages are clustered or not. Second step involves a Bayesian spatial autoregressive model in order to identify the effects of several demographic-, socioeconomic-, and transportation-related variables on the magnitude of customers affected by power outages. Results showed that customers affected by outages are spatially clustered at particular regions rather than being dispersed. This indicates the need to pinpoint such vulnerable locations and develop strategies to reduce hurricane-induced disruptions. Furthermore, the increase in the magnitude of affected customers was found to be associated with several variables such as the power network and total generated trips as well as the demographic factors. The information gained from the findings of this study can assist emergency officials in identifying critical and/or less resilient regions, and determining those demographic and socioeconomic groups which were relatively more affected by the consequences of hurricanes than others.

Suggested Citation

  • Mehmet Baran Ulak & Ayberk Kocatepe & Lalitha Madhavi Konila Sriram & Eren Erman Ozguven & Reza Arghandeh, 2018. "Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1489-1508, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3260-9
    DOI: 10.1007/s11069-018-3260-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3260-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3260-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Quiring & Laiyin Zhu & Seth Guikema, 2011. "Importance of soil and elevation characteristics for modeling hurricane-induced power outages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 365-390, July.
    2. Liévanos, Raoul S. & Horne, Christine, 2017. "Unequal resilience: The duration of electricity outages," Energy Policy, Elsevier, vol. 108(C), pages 201-211.
    3. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    4. James P. Lesage, 1997. "Bayesian Estimation of Spatial Autoregressive Models," International Regional Science Review, , vol. 20(1-2), pages 113-129, April.
    5. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    6. Sigridur Bjarnadottir & Yue Li & Mark Stewart, 2011. "Social vulnerability index for coastal communities at risk to hurricane hazard and a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1055-1075, November.
    7. Rehman Akhtar & Joost Santos, 2013. "Risk-based input–output analysis of hurricane impacts on interdependent regional workforce systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 391-405, January.
    8. Ruijie Bian & Chester G. Wilmot, 2017. "Measuring the vulnerability of disadvantaged populations during hurricane evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 691-707, January.
    9. Roshanak Nateghi & Seth Guikema & Steven Quiring, 2014. "Forecasting hurricane-induced power outage durations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1795-1811, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghui (Jove) Hou & Laura Arpan & Yijie Wu & Richard Feiock & Eren Ozguven & Reza Arghandeh, 2020. "The Road toward Smart Cities: A Study of Citizens’ Acceptance of Mobile Applications for City Services," Energies, MDPI, vol. 13(10), pages 1-15, May.
    2. Mahyar Ghorbanzadeh & Mohammadreza Koloushani & Mehmet Baran Ulak & Eren Erman Ozguven & Reza Arghandeh Jouneghani, 2020. "Statistical and Spatial Analysis of Hurricane-induced Roadway Closures and Power Outages," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Ayberk Kocatepe & Mehmet Baran Ulak & Grzegorz Kakareko & Eren Erman Ozguven & Sungmoon Jung & Reza Arghandeh, 2019. "Measuring the accessibility of critical facilities in the presence of hurricane-related roadway closures and an approach for predicting future roadway disruptions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 615-635, February.
    4. Mehmet Burak Kaya & Onur Alisan & Alican Karaer & Eren Erman Ozguven, 2024. "Assessing Tornado Impacts in the State of Kentucky with a Focus on Demographics and Roadways Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
    5. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2023. "An Insurance Paradigm for Improving Power System Resilience via Distributed Investment," Papers 2302.01456, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    2. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    3. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    5. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    6. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    7. D. Wanik & E. Anagnostou & B. Hartman & M. Frediani & M. Astitha, 2015. "Storm outage modeling for an electric distribution network in Northeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1359-1384, November.
    8. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    9. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    10. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    12. Angel Alañon-Pardo & Patrick J. Walsh & Rafael Myro, 2018. "Do neighboring municipalities matter in industrial location decisions? Empirical evidence from Spain," Empirical Economics, Springer, vol. 55(3), pages 1145-1179, November.
    13. Holloway, Garth & Shankar, Bhavani & Rahman, Sanzidur, 2002. "Bayesian spatial probit estimation: a primer and an application to HYV rice adoption," Agricultural Economics, Blackwell, vol. 27(3), pages 383-402, November.
    14. Angel Alañón Pardo & Josep Maria Arauzo Carod, 2009. "Accessibility and Industrial Location: evidence from Spain," Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales 09-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales.
    15. Diana Mitsova & Ann-Margaret Esnard & Alka Sapat & Betty S. Lai, 2018. "Socioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane Irma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 689-709, November.
    16. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.
    17. Ángel Alanón & Rafael Myro, "undated". "Does neighboring "industrial atmosphere" matter in industrial location?. Empirical evidence from Spanish municipalities," Studies on the Spanish Economy 199, FEDEA.
    18. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    19. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Semerikova, Elena, 2014. "Unemployment in East and West Germany: Spatial panel data analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 107-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3260-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.