IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p325-340.html
   My bibliography  Save this article

Flood forecasts based on multi-model ensemble precipitation forecasting using a coupled atmospheric-hydrological modeling system

Author

Listed:
  • Juan Wu
  • Guihua Lu
  • Zhiyong Wu

Abstract

The recent improvement of numerical weather prediction (NWP) models has a strong potential for extending the lead time of precipitation and subsequent flooding. However, uncertainties inherent in precipitation outputs from NWP models are propagated into hydrological forecasts and can also be magnified by the scaling process, contributing considerable uncertainties to flood forecasts. In order to address uncertainties in flood forecasting based on single-model precipitation forecasting, a coupled atmospheric-hydrological modeling system based on multi-model ensemble precipitation forecasting is implemented in a configuration for two episodes of intense precipitation affecting the Wangjiaba sub-region in Huaihe River Basin, China. The present study aimed at comparing high-resolution limited-area meteorological model Canadian regional mesoscale compressible community model (MC2) with the multiple linear regression integrated forecast (MLRF), covering short and medium range. The former is a single-model approach; while the latter one is based on NWP models [(MC2, global environmental multiscale model (GEM), T213L31 global spectral model (T213)] integrating by a multiple linear regression method. Both MC2 and MLRF are coupled with Chinese National Flood Forecasting System (NFFS), MC2-NFFS and MLRF-NFFS, to simulate the discharge of the Wangjiaba sub-basin. The evaluation of the flood forecasts is performed both from a meteorological perspective and in terms of discharge prediction. The encouraging results obtained in this study demonstrate that the coupled system based on multi-model ensemble precipitation forecasting has a promising potential of increasing discharge accuracy and modeling stability in terms of precipitation amount and timing, along with reducing uncertainties in flood forecasts and models. Moreover, the precipitation distribution of MC2 is more problematic in finer temporal and spatial scales, even for the high resolution simulation, which requests further research on storm-scale data assimilation, sub-grid-scale parameterization of clouds and other small-scale atmospheric dynamics. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Juan Wu & Guihua Lu & Zhiyong Wu, 2014. "Flood forecasts based on multi-model ensemble precipitation forecasting using a coupled atmospheric-hydrological modeling system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 325-340, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:325-340
    DOI: 10.1007/s11069-014-1204-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1204-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1204-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Li & Jianzhong Zhou & Lu Chen & Kuaile Feng & Hairong Zhang & Changqing Meng & Na Sun, 2019. "Upper and Lower Bound Interval Forecasting Methodology Based on Ideal Boundary and Multiple Linear Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1203-1215, February.
    2. Marianna Rodrigues Gullo Cavalcante & Priscila Luz Barcellos & Marcio Cataldi, 2020. "Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1117-1134, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    2. Postel-Vinay, Fabien & Jolivet, Grégory & Borowczyk-Martins, Daniel, 2011. "Accounting For Endogenous Search Behavior in Matching Function Estimation," CEPR Discussion Papers 8471, C.E.P.R. Discussion Papers.
    3. Choi, In & Kurozumi, Eiji, 2012. "Model selection criteria for the leads-and-lags cointegrating regression," Journal of Econometrics, Elsevier, vol. 169(2), pages 224-238.
    4. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    5. Muhammad Shahbaz & Pervaz Azim & Khalil Ahmad, 2011. "Exports-Led Growth Hypothesis in Pakistan: Further Evidence," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 1(3), pages 182-197.
    6. Helmut Herwartz & Henning Weber, 2005. "Exchange rate uncertainty and trade growth—a comparison of linear and non‐linear (forecasting) models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 1-26, January.
    7. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    8. Herwartz, Helmut & Neumann, Michael H., 2005. "Bootstrap inference in systems of single equation error correction models," Journal of Econometrics, Elsevier, vol. 128(1), pages 165-193, September.
    9. Ventosa-Santaulària Daniel & Gómez-Zaldívar Manuel, 2011. "Testing for a Deterministic Trend When There is Evidence of Unit Root," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-26, January.
    10. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    11. Vanessa Berenguer‐Rico & Josep Lluís Carrion‐i‐Silvestre, 2006. "Testing for Multicointegration in Panel Data with Common Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 721-739, December.
    12. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    13. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    14. repec:hal:spmain:info:hdl:2441/4l136f59vb8mcalu5p6p5li007 is not listed on IDEAS
    15. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    16. Ying Qian & Duncan, Ronald & DEC, 1994. "Optimal hedging strategy revisited : acknowledging the existence of nonstationary economic timeseries," Policy Research Working Paper Series 1279, The World Bank.
    17. Pedroni, Peter L. & Vogelsang, Timothy J. & Wagner, Martin & Westerlund, Joakim, 2015. "Nonparametric rank tests for non-stationary panels," Journal of Econometrics, Elsevier, vol. 185(2), pages 378-391.
    18. Li, Dao & He, Changli, 2012. "Testing for Linear Cointegration Against Smooth-Transition Cointegration," Working Papers 2012:6, Örebro University, School of Business.
    19. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    20. Yang, Minxian & Bewley, Ronald, 1996. "On cointegration tests for VAR models with drift," Economics Letters, Elsevier, vol. 51(1), pages 45-50, April.
    21. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:325-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.