IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i5d10.1007_s11069-024-07050-w.html
   My bibliography  Save this article

Review of flood monitoring and prevention approaches: a data analytic perspective

Author

Listed:
  • Syed Asad Shabbir Bukhari

    (National University of Sciences and Technology (NUST))

  • Imran Shafi

    (National University of Sciences and Technology (NUST))

  • Jamil Ahmad

    (Abasyn University, Islamabad Campus)

  • Santos Gracia Villar

    (Universidad Europea del Atlantico
    Universidad Internacional Iberoamericana
    Universidade Internacional do Cuanza)

  • Eduardo Garcia Villena

    (Universidad Europea del Atlantico
    Universidad Internacional Iberoamericana Arecibo
    Universidad de La Romana)

  • Tahir Khurshaid

    (Yeungnam University)

  • Imran Ashraf

    (Yeungnam University)

Abstract

Floods are among the most destructive natural disasters, causing significant loss of life, property damage, and disruption to communities. The necessity for creative and practical flood monitoring and prevention technologies has been highlighted in recent years by the frequency and intensity of floods that are growing. Flood management uses cutting-edge technology and approaches, as well as, their potential to increase disaster resilience. This study reviews flood monitoring and prevention strategies from a data analytic perspective, particularly those involving the Internet of Things (IoT), and machine learning. The utilization of IoT, data analytics, and machine learning tools within cutting-edge solutions facilitates real-time data collection, predictive modeling, and informed decision-making. With the help of community involvement and potential catastrophe, resilience improved and safeguarded the people, and property damages in flood-prone areas. Techniques for flood monitoring are explored including remote sensing, IoT, ground-based solutions, machine learning, and early flood alert systems concerning their processes involving data acquisition, data integration, scalability, real-time monitoring, infrastructure, and accuracy. In addition, current challenges are these approaches are discussed and future research directions are outlined. Key findings indicate the integration of these technologies to enhance disaster resilience by providing real-time monitoring and early warning systems, hence drastically reducing the impact caused by floods. This paper presents flood monitoring techniques through remote sensing, IoT, ground-based solutions, machine learning, and early flood alert systems in such aspects as data acquisition, integration, scalability, real-time monitoring, infrastructure, and accuracy. These techniques, however, are all still bedeviled by challenges such as high implementation costs, maintenance difficulties, and the feature of a robust communication infrastructure. In this regard, research in the future will be directed to cost-effectiveness in solution designing, improving the accuracy of predictive models, and wider engagement involving the community in flood risk management.

Suggested Citation

  • Syed Asad Shabbir Bukhari & Imran Shafi & Jamil Ahmad & Santos Gracia Villar & Eduardo Garcia Villena & Tahir Khurshaid & Imran Ashraf, 2025. "Review of flood monitoring and prevention approaches: a data analytic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5103-5128, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07050-w
    DOI: 10.1007/s11069-024-07050-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-07050-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-07050-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saad Mazhar Khan & Imran Shafi & Wasi Haider Butt & Isabel de la Torre Diez & Miguel Angel López Flores & Juan Castanedo Galán & Imran Ashraf, 2023. "A Systematic Review of Disaster Management Systems: Approaches, Challenges, and Future Directions," Land, MDPI, vol. 12(8), pages 1-37, July.
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    5. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    6. Abeer Aljohani, 2023. "Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    7. Chaowei Xu & Jiashuai Yang & Lingyue Wang, 2022. "Application of Remote-Sensing-Based Hydraulic Model and Hydrological Model in Flood Simulation," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    8. Jian Chen & Yaowei Li & Changhui Zhang & Yangyang Tian & Zhikai Guo, 2023. "Urban Flooding Prediction Method Based on the Combination of LSTM Neural Network and Numerical Model," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    9. Hadush Meresa & Bernhard Tischbein & Tewodros Mekonnen, 2022. "Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2649-2679, April.
    10. Vieri Tarchiani & Giovanni Massazza & Maurizio Rosso & Maurizio Tiepolo & Alessandro Pezzoli & Mohamed Housseini Ibrahim & Gaptia Lawan Katiellou & Paolo Tamagnone & Tiziana De Filippis & Leandro Rocc, 2020. "Community and Impact Based Early Warning System for Flood Risk Preparedness: The Experience of the Sirba River in Niger," Sustainability, MDPI, vol. 12(5), pages 1-24, February.
    11. Saad Mazhar Khan & Imran Shafi & Wasi Haider Butt & Isabel de la Torre Díez & Miguel Angel López Flores & Juan Castañedo Galvlán & Imran Ashraf, 2023. "Model Driven Approach for Efficient Flood Disaster Management with Meta Model Support," Land, MDPI, vol. 12(8), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Asad Shabbir Bukhari & Imran Shafi & Jamil Ahmad & Hammad Tanveer Butt & Tahir Khurshaid & Imran Ashraf, 2025. "Enhancing flood monitoring and prevention using machine learning and IoT integration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4837-4864, March.
    2. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    3. Saeed Alqadhi & Javed Mallick & Meshel Alkahtani & Intikhab Ahmad & Dhafer Alqahtani & Hoang Thi Hang, 2024. "Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3719-3747, March.
    4. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Kohtz, Sara & Zhao, Junhan & Renteria, Anabel & Lalwani, Anand & Xu, Yanwen & Zhang, Xiaolong & Haran, Kiruba Sivasubramaniam & Senesky, Debbie & Wang, Pingfeng, 2024. "Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
    7. Stefanos Dosis & George P. Petropoulos & Kleomenis Kalogeropoulos, 2023. "A Geospatial Approach to Identify and Evaluate Ecological Restoration Sites in Post-Fire Landscapes," Land, MDPI, vol. 12(12), pages 1-23, December.
    8. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    9. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    10. Yanqian Li & Yanlai Zhou & Yuxuan Luo & Zhihao Ning & Chong-Yu Xu, 2024. "Boosting the Development and Management of Wind Energy: Self-Organizing Map Neural Networks for Clustering Wind Power Outputs," Energies, MDPI, vol. 17(21), pages 1-15, November.
    11. Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
    12. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    13. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    14. Bhagwan, N. & Evans, M., 2023. "A review of industry 4.0 technologies used in the production of energy in China, Germany, and South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    16. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    17. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    18. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    19. Berny Carrera & Kwanho Kim, 2024. "Comparative Analysis of Machine Learning Techniques in Predicting Wind Power Generation: A Case Study of 2018–2021 Data from Guatemala," Energies, MDPI, vol. 17(13), pages 1-27, June.
    20. Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07050-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.