IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06357-4.html
   My bibliography  Save this article

Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management

Author

Listed:
  • Saeed Alqadhi

    (King Khalid University)

  • Javed Mallick

    (King Khalid University)

  • Meshel Alkahtani

    (King Khalid University)

  • Intikhab Ahmad

    (University of Delhi)

  • Dhafer Alqahtani

    (King Khalid University)

  • Hoang Thi Hang

    (Jamia Millia Islamia)

Abstract

Landslides in the Nainital district of Uttarakhand, India, pose a significant threat to human communities and local ecosystems. This study aims to improve landslide susceptibility modeling by integrating advanced analytical techniques with deep learning, sensitivity analysis and explainable artificial intelligence (XAI). Our approach captures the complex interaction between natural terrain and human intervention and provides a novel framework for risk assessment and management. In this analysis, we performed a multicollinearity analysis to ensure the independence of predictor variables. We optimized deep learning models, including deep neural network (DNN), convolutional neural network (CNN) and a hybrid of CNN with long short-term memory (LSTM), using Bayesian techniques. This optimization achieved a high degree of precision in parameter tuning. In the study, multicollinearity analysis showed that no parameter exceeded the multicollinearity threshold of over 9. When evaluating accuracy, the CNN-LSTM model was found to be the most effective with an Area Under the Curve (AUC) of 0.96, while DNN and CNN also had high AUCs of 0.94 and 0.95, respectively. Spatially, the CNN model identified 16.28% of the total area as highly susceptible, while the hybrid CNN-LSTM model delineated 13.39%. Sobol’s sensitivity analysis emphasized critical factors such as slope, elevation and geology as well as the anthropogenic influence of distance to built-up (DTB). The SHAP analysis confirmed the importance of these factors. This integrated method offers an innovative way to understand the dynamics of landslides by combining natural and human factors and provides the basis for sustainable infrastructure planning in Nainital.

Suggested Citation

  • Saeed Alqadhi & Javed Mallick & Meshel Alkahtani & Intikhab Ahmad & Dhafer Alqahtani & Hoang Thi Hang, 2024. "Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3719-3747, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06357-4
    DOI: 10.1007/s11069-023-06357-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06357-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06357-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06357-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.