IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i1p803-821.html
   My bibliography  Save this article

Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan

Author

Listed:
  • Atta-ur Rahman
  • Amir Khan
  • Andrew Collins

Abstract

This article deals with the analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan. The present study is based on Muzaffarabad, which lies in the lesser Himalayas. Geologically, the Kashmir Himalaya is the young and most dynamic system in the world. In Muzaffarabad, mostly, people live on the fragile mountain slopes, and therefore, they are highly vulnerable to the risk of landslides. To achieve the objectives of the study, data were collected both from primary and secondary sources. Primary data were obtained through intensive field work and human perception survey, while secondary data were obtained from the related line agencies. The analysis reveals that in the study area, immature geology, active seismic zone, wide range of temperature and seasonal rain are the major physical factors, whereas human interventions on the fragile slopes are intensifying factors which in effect contribute to the landslide incidence. As a result, the adverse impacts on housing, sources of livelihood earnings and human casualties are escalating day-by-day. There are several implementing agencies which are responsible for reducing the risk of landsliding. So far, these agencies have not reduced the landslide damages rather their intensity and frequency have been increased especially after 2005 Kashmir earthquake. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Atta-ur Rahman & Amir Khan & Andrew Collins, 2014. "Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 803-821, March.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:803-821
    DOI: 10.1007/s11069-013-0918-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0918-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0918-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko-Fei Liu & Hsin-Chi Li & Yu-Charn Hsu, 2009. "Debris flow hazard assessment with numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 137-161, April.
    2. Paola Gattinoni, 2009. "Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 161-178, July.
    3. Atta-ur-Rahman & Amir Khan & Andrew Collins & Fareen Qazi, 2011. "Causes and extent of environmental impacts of landslide hazard in the Himalayan region: a case study of Murree, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 413-434, May.
    4. S. Raghukanth, 2008. "Ground motion estimation during the Kashmir earthquake of 8th October 2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi-yu Hu & Miao Yu & Ting Que & Gang Fan & Hui-ge Xing, 2022. "Individual willingness to prepare for disasters in a geological hazard risk area: an empirical study based on the protection motivation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2087-2111, February.
    2. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    3. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    4. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    5. Naveed Ahmad & Qaisar Ali & Helen Crowley & Rui Pinho, 2014. "Earthquake loss estimation of residential buildings in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1889-1955, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahid Vatanpour & Mohammad Ghafoori & Hossein Talouki, 2014. "Probabilistic and sensitivity analyses of effective geotechnical parameters on rock slope stability: a case study of an urban area in northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1659-1678, April.
    2. Sajid Ali & Rashid Haider & Wahid Abbas & Muhammad Basharat & Klaus Reicherter, 2021. "Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2437-2460, April.
    3. Hsin-Chi Li & Tingyeh Wu & Hsiao-Ping Wei & Hung-Ju Shih & Yi-Chiung Chao, 2017. "Basinwide disaster loss assessments under extreme climate scenarios: a case study of the Kaoping River basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1039-1058, April.
    4. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    5. Atta-ur-Rahman & Amir Khan, 2013. "Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 887-904, March.
    6. Atta-ur-Rahman & Amir Khan & Andrew Collins & Fareen Qazi, 2011. "Causes and extent of environmental impacts of landslide hazard in the Himalayan region: a case study of Murree, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 413-434, May.
    7. Lamek Nahayo & Cui Peng & Yu Lei & Rongzhi Tan, 2023. "Spatial understanding of historical and future landslide variation in Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 613-641, October.
    8. Victor Carvalho Cabral & Fábio Augusto Gomes Vieira Reis & Fernando Mazo D’Affonseca & Ana Lucía & Claudia Vanessa Corrêa & Vinicius Veloso & Marcelo Fischer Gramani & Agostinho Tadashi Ogura & Andrea, 2021. "Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3021-3043, September.
    9. Said Qasim & Muhammad Qasim, 2020. "An indicator based approach for assessing household’s perceptions of landslide risk in Murree hills of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2171-2182, September.
    10. Yao-Ming Hong & Shiuan Wan, 2011. "Forecasting groundwater level fluctuations for rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 167-184, May.
    11. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.
    12. Chia-Jeng Chen & Tsung-Yu Lee & Che-Min Chang & Jun-Yi Lee, 2018. "Assessing typhoon damages to Taiwan in the recent decade: return period analysis and loss prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 759-783, March.
    13. Thomas J. Huggins & Feiyu E & Kangming Chen & Wenwu Gong & Lili Yang, 2020. "Infrastructural Aspects of Rain-Related Cascading Disasters: A Systematic Literature Review," IJERPH, MDPI, vol. 17(14), pages 1-25, July.
    14. Hakan Tanyaş & Tolga Görüm & Dalia Kirschbaum & Luigi Lombardo, 2022. "Could road constructions be more hazardous than an earthquake in terms of mass movement?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 639-663, May.
    15. Rajaram Chenna & Pradeep Kumar Ramancharla, 2016. "Simulation of near-field ground motion characteristics of May 01, 2013, Doda earthquake using modified semi-empirical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1411-1430, June.
    16. Atta-ur-Rahman & Amir Khan, 2011. "Analysis of flood causes and associated socio-economic damages in the Hindukush region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1239-1260, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:803-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.