IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222020989.html
   My bibliography  Save this article

A physics-inspired neural network model for short-term wind power prediction considering wake effects

Author

Listed:
  • Guo, Nai-Zhi
  • Shi, Ke-Zhong
  • Li, Bo
  • Qi, Liang-Wen
  • Wu, Hong-Hui
  • Zhang, Zi-Liang
  • Xu, Jian-Zhong

Abstract

Accurate short-term wind power prediction plays an essential role in the wind farm control and the dispatch of wind energy into the power system. Incorporating physical factors that have a major impact on wind farm power generation into machine learning algorithms has always been an important way to improve prediction accuracy. Overlooked in the literature, however, is the influence of wind turbines wakes in improving model predictions. In this work, a physics-inspired neural network model for short-term wind power prediction is developed considering wake effects. Different from traditional neural network models, part of the nodes in the proposed model are determined by the analytical wake model, which enhances the statistical prediction model physically. In this way, the model can be well adapted to the wake effects in the wind farm. Verifications in the actual wind farm case illustrate that there is a good agreement with the prediction results and measured data. Compared with traditional models, the wind power prediction performance of the proposed model has improved by more than 20% in terms of RMSE. Based on this work, we recommend that the wake effect should be considered in the short-term wind power prediction model, which is of great benefit to improving its accuracy.

Suggested Citation

  • Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020989
    DOI: 10.1016/j.energy.2022.125208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Cheng, Yu & Zhang, Mingming & Zhang, Ziliang & Xu, Jianzhong, 2019. "A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory," Applied Energy, Elsevier, vol. 239(C), pages 96-106.
    3. Chang, G.W. & Lu, H.J. & Chang, Y.R. & Lee, Y.D., 2017. "An improved neural network-based approach for short-term wind speed and power forecast," Renewable Energy, Elsevier, vol. 105(C), pages 301-311.
    4. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    5. Optis, Mike & Perr-Sauer, Jordan, 2019. "The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 27-41.
    6. Peng, Xiaokang & Liu, Zicheng & Jiang, Dong, 2021. "A review of multiphase energy conversion in wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    8. Wang, Jianzhou & Wang, Shiqi & Yang, Wendong, 2019. "A novel non-linear combination system for short-term wind speed forecast," Renewable Energy, Elsevier, vol. 143(C), pages 1172-1192.
    9. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    10. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    11. Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
    3. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    4. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    5. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    6. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    7. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    8. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    10. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    11. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    12. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    13. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    14. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    15. Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
    16. Mounir Alliche & Redha Rebhi & Noureddine Kaid & Younes Menni & Houari Ameur & Mustafa Inc & Hijaz Ahmad & Giulio Lorenzini & Ayman A. Aly & Sayed K. Elagan & Bassem F. Felemban, 2021. "Estimation of the Wind Energy Potential in Various North Algerian Regions," Energies, MDPI, vol. 14(22), pages 1-13, November.
    17. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    18. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
    19. Xiaohan Huang & Aihua Jiang, 2022. "Wind Power Generation Forecast Based on Multi-Step Informer Network," Energies, MDPI, vol. 15(18), pages 1-17, September.
    20. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.