IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i7d10.1007_s11069-023-06366-3.html
   My bibliography  Save this article

Real-time flood forecasting using an integrated hydrologic and hydraulic model for the Vamsadhara and Nagavali basins, Eastern India

Author

Listed:
  • G. Venkata Rao

    (National Institute of Technology Warangal)

  • Nageswara Reddy Nagireddy

    (National Institute of Technology Warangal)

  • Venkata Reddy Keesara

    (National Institute of Technology Warangal)

  • Venkataramana Sridhar

    (Virginia Polytechnic Institute and State University)

  • Raghavan Srinivasan

    (Texas A&M University)

  • N. V. Umamahesh

    (National Institute of Technology Warangal)

  • Deva Pratap

    (National Institute of Technology Warangal)

Abstract

Due to recent rainfall extremes and tropical cyclones that form over the Bay of Bengal during the pre- and post-monsoon seasons, the Nagavali and Vamsadhara basins in India experience frequent floods, causing significant loss of human life and damage to agricultural lands and infrastructure. This study provides an integrated hydrologic and hydraulic modeling system that is based on the Soil and Water Assessment Tool model and the 2-Dimensional Hydrological Engineering Centre-River Analysis System, which simulates floods using Global Forecasting System rainfall forecasts with a 48-h lead time. The integrated model was used to simulate the streamflow, flood area extent, and depth for the historical flood events (i.e., 1991–2018) with peak discharges of 1200 m3/s in the Nagavali basin and 1360 m3/s in the Vamsadhara basin. The integrated model predicted flood inundation depths that were in good agreement with observed inundation depths provided by the Central Water Commission. The inundation maps generated by the integrated modeling system with a 48-h lead time for tropical cyclone Titli demonstrated an accuracy of more than 75%. The insights gained from this study will help the public and government agencies make better decisions and deal with floods.

Suggested Citation

  • G. Venkata Rao & Nageswara Reddy Nagireddy & Venkata Reddy Keesara & Venkataramana Sridhar & Raghavan Srinivasan & N. V. Umamahesh & Deva Pratap, 2024. "Real-time flood forecasting using an integrated hydrologic and hydraulic model for the Vamsadhara and Nagavali basins, Eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6011-6039, May.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-023-06366-3
    DOI: 10.1007/s11069-023-06366-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06366-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06366-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lariyah Mohd Sidek & Aminah Shakirah Jaafar & Wan Hazdy Azad Wan Abdul Majid & Hidayah Basri & Mohammad Marufuzzaman & Muzad Mohd Fared & Wei Chek Moon, 2021. "High-Resolution Hydrological-Hydraulic Modeling of Urban Floods Using InfoWorks ICM," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    2. Vinit Sehgal & Venkataramana Sridhar & Luke Juran & Jactone Arogo Ogejo, 2018. "Integrating Climate Forecasts with the Soil and Water Assessment Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern U.S," Sustainability, MDPI, vol. 10(9), pages 1-27, August.
    3. Koppuravuri Ramabrahmam & Venkata Reddy Keesara & Raghavan Srinivasan & Deva Pratap & Venkataramana Sridhar, 2021. "Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    4. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    5. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    2. Nathaniel Geiger & Bryan McLaughlin & John Velez, 2021. "Not all boomers: temporal orientation explains inter- and intra-cultural variability in the link between age and climate engagement," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    3. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    4. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    5. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    6. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    7. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    8. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    9. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    10. Wu, Guojun & Song, Ge & Lv, Xiaoxiang & Luo, Shikai & Shi, Chengchun & Zhu, Hongtu, 2023. "DNet: distributional network for distributional individualized treatment effects," LSE Research Online Documents on Economics 122895, London School of Economics and Political Science, LSE Library.
    11. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    12. Menghao Wang & Shanhu Jiang & Liliang Ren & Chong-Yu Xu & Linyong Wei & Hao Cui & Fei Yuan & Yi Liu & Xiaoli Yang, 2022. "The Development of a Nonstationary Standardised Streamflow Index Using Climate and Reservoir Indices as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1377-1392, March.
    13. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. repec:osf:socarx:f53kz_v1 is not listed on IDEAS
    15. Giampiero Marra & Matteo Fasiolo & Rosalba Radice & Rainer Winkelmann, 2023. "A flexible copula regression model with Bernoulli and Tweedie margins for estimating the effect of spending on mental health," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1305-1322, June.
    16. Alberto Martínez-Salvador & Agustín Millares & Joris P. C. Eekhout & Carmelo Conesa-García, 2021. "Assessment of Streamflow from EURO-CORDEX Regional Climate Simulations in Semi-Arid Catchments Using the SWAT Model," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    17. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    18. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    19. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
    20. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    21. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-023-06366-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.