IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-023-06181-w.html
   My bibliography  Save this article

Characterizing the tropical cyclone Seroja using the Indonesian CORS network

Author

Listed:
  • Nabila S. E. Putri

    (Faculty of Earth Sciences and Technology, Bandung Institute of Technology)

  • Dudy D. Wijaya

    (Bandung Institute of Technology)

  • Muhammad R. Abdillah

    (Bandung Institute of Technology)

  • Zamzam A. J. Tanuwijaya

    (Bandung Institute of Technology)

  • Sidik T. Wibowo

    (Geospatial Information Agency (BIG))

  • Wedyanto Kuntjoro

    (Bandung Institute of Technology)

Abstract

In the early April 2021, the tropical cyclone Seroja was formed over the Savu Sea in the southeastern Indonesia. Seroja provided a unique opportunity to observe a tropical cyclone over the Indonesian region using ground-based global navigation satellite systems (GNSS) observations. Precipitable water vapor (PWV) from several permanent GNSS stations in the region was utilized to detect Seroja. From in situ meteorological observations, we found that surface pressure values dropped by more than 14 hPa during Seroja, relative humidity increased, and temperature was reduced. PWV at two nearest stations showed an upward trend (around 70 mm at its peak) during the formation of the cyclone, then dropped immediately (less than 20 mm). After Seroja, the mean PWV was lower (56 mm before and 39 mm after), whereas the standard deviation was higher (5–6 mm before and 9 mm after). We also compared hourly PWV with precipitation from the global satellite mapping of precipitation (GSMaP). Before Seroja, some precipitation events occurred, followed by heavy rains that lasted for several days when the cyclone was passing. After Seroja had passed, both PWV and precipitation dropped significantly. However, while PWV values after Seroja were fluctuating, no rain occurred. We then investigated the water vapor budget to understand the change of PWV over time. We found that precipitation and the divergence of moisture flux played an important role in the change of PWV over time. Heavy precipitation during Seroja resulted in a drop in PWV, although the negative divergence provided a bit of offset. After Seroja had passed, no precipitation occurred, and the change of PWV could be attributed mainly to the moisture divergence. The lagged correlation between PWV and precipitation was determined using moving average over the time series. The highest correlation was found 1–2 days before the event with moving average periods of 7 and 10 days.

Suggested Citation

  • Nabila S. E. Putri & Dudy D. Wijaya & Muhammad R. Abdillah & Zamzam A. J. Tanuwijaya & Sidik T. Wibowo & Wedyanto Kuntjoro, 2023. "Characterizing the tropical cyclone Seroja using the Indonesian CORS network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1819-1838, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06181-w
    DOI: 10.1007/s11069-023-06181-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06181-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06181-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Ryan L. Sriver & Matthew Huber, 2007. "Observational evidence for an ocean heat pump induced by tropical cyclones," Nature, Nature, vol. 447(7144), pages 577-580, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    2. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    3. Brokovich, E. & Schwarz, A.M. & Oeta, J., 2012. "Building social and ecological resilience to climate change in Roviana, Solomon Islands: PASAP country activity for Solomon Islands: Brief review: climate change trends and projections for Solomon Isl," Monographs, The WorldFish Center, number 40178, April.
    4. Shibly Shahrier & Koji Kotani, 2016. "Labor Donation Or Money Donation? Pro-Sociality On Prevention Of Natural Disasters In A Case Of Cyclone Aila, Bangladesh," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(01), pages 1-26, March.
    5. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    7. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    8. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    9. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    10. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    11. Thit Oo Kyaw & Miguel Esteban & Martin Mäll & Tomoya Shibayama, 2021. "Extreme waves induced by cyclone Nargis at Myanmar coast: numerical modeling versus satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1797-1818, April.
    12. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    13. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    14. Cong Gao & Lei Zhou & I.-I. Lin & Chunzai Wang & Shoude Guan & Fei-Fei Jin & Raghu Murtugudde, 2025. "Crucial role of subsurface ocean variability in tropical cyclone genesis," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. D. Bala Subrahamanyam & Radhika Ramachandran & K. Nalini & Freddy P. Paul & S. Roshny, 2019. "Performance evaluation of COSMO numerical weather prediction model in prediction of OCKHI: one of the rarest very severe cyclonic storms over the Arabian Sea—a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 431-459, March.
    16. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    17. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    18. Jerch, Rhiannon & Kahn, Matthew E. & Lin, Gary C., 2023. "Local public finance dynamics and hurricane shocks," Journal of Urban Economics, Elsevier, vol. 134(C).
    19. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    20. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06181-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.