IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06027-5.html
   My bibliography  Save this article

Evaluation of potential flood hazard through spatial zoning in Acha–Arica, northern Chile, integrating GIS, multi-criteria analysis and two-dimensional numerical simulation

Author

Listed:
  • Oscar Corvacho-Ganahín

    (Universidad de Tarapacá)

  • Mauricio González-Pacheco

    (University of Barcelona)

  • Marcos Francos

    (Universidad de Salamanca (https://ror.org/02f40zc51))

  • Filipe Carvalho

    (University of Barcelona)

Abstract

This investigation is a study of the spatial propagation of a flood through the execution of two processes integrated into Geographic Information Systems to produce maps of potential flood zones. Based on Multicriteria Assessment (MCDA) techniques, the Analytical Hierarchy Process (AHP) is used to identify areas with different potential degrees of flooding, and the hydrodynamic behavior of the extension is analyzed in terms of flooding in relation to different maximum flows, using the Nays2D solver of the iRIC software. For MCDA, four essential parameters were used for the evaluation of flood zones in the middle and lower course of the Acha–Arica: land use, elevation, slope of the land and distance to the river were used for the establishment of potential zoning. While photogrammetry procedures and a high-resolution Digital Elevation Model, together with base calculation conditions such as roughness, edge, discharge and time, were used for the hydrodynamic simulation of flooding for four different maximum flows of 42, 57, 84 and 114 m3/s. The results indicate that the AHP technique allows quite a coherent prediction of flood zones to be made with a limited amount of data. Hydrodynamic simulation with Nays2D allowed a simulated graphic representation of the extension to be obtained that reflects conditions very close to the actual conditions in which these events take place. Validation was performed by comparing the results with each other and with other sources of documentary records which showed high similarities between flood zones obtained. Graphical abstract

Suggested Citation

  • Oscar Corvacho-Ganahín & Mauricio González-Pacheco & Marcos Francos & Filipe Carvalho, 2023. "Evaluation of potential flood hazard through spatial zoning in Acha–Arica, northern Chile, integrating GIS, multi-criteria analysis and two-dimensional numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 755-783, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06027-5
    DOI: 10.1007/s11069-023-06027-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06027-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06027-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    2. Y. Liu & F. Smedt, 2005. "Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 605-624, October.
    3. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    4. Derya Ozturk & Fatmagul Batuk, 2011. "IMPLEMENTATION OF GIS-BASED MULTICRITERIA DECISION ANALYSIS WITH VB IN ArcGIS," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(06), pages 1023-1042.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurnabi Meherul Alam & Chayna Jana & Debashis Mandal & Sunita Kumari Meena & Shashi Shekhar Shrimali & Uday Mandal & Sabyasachi Mitra & Gouranga Kar, 2022. "Applying Analytic Hierarchy Process for Identifying Best Management Practices in Erosion Risk Areas of Northwestern Himalayas," Land, MDPI, vol. 11(6), pages 1-18, June.
    2. Ainhoa Gonzalez & Álvaro Enríquez-de-Salamanca, 2018. "Spatial Multi-Criteria Analysis in Environmental Assessment: A Review and Reflection on Benefits and Limitations," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-24, September.
    3. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    4. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    5. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    6. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    7. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    8. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.
    9. Hyunjin Lim & Sunkuk Kim & Yonggu Kim & Seunghyun Son, 2021. "Relative Importance Analysis of Safety Climate Evaluation Factors Using Analytical Hierarchical Process (AHP)," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    10. Ormerod, R.J., 2014. "Critical rationalism in practice: Strategies to manage subjectivity in OR investigations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 784-797.
    11. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    12. Sunita Guru & Jitendra Nenavani & Vipul Patel & Nityesh Bhatt, 2020. "Ranking of perceived risks in online shopping," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(2), pages 137-152, June.
    13. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    14. Rimvydas Labanauskis & Aurelija Kasparavičiūtė & Vida Davidavičienė & Dovilė Deltuvienė, 2018. "Towards quality assurance of the study process using the Multi-Criteria Decision-Making Method," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(2), pages 799-819, December.
    15. Yusuf Ersoy & Ali Tehci, 2023. "Relationship marketing orientation in healthcare organisations with the AHP method," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 35-45.
    16. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    17. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    18. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    19. Mirza Sikalo & Almira Arnaut-Berilo & Adela Delalic, 2023. "A Combined AHP-PROMETHEE Approach for Portfolio Performance Comparison," IJFS, MDPI, vol. 11(1), pages 1-15, March.
    20. Daji Ergu & Gang Kou, 2012. "Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making," Annals of Operations Research, Springer, vol. 197(1), pages 5-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06027-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.