IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i3d10.1007_s11069-021-05024-w.html
   My bibliography  Save this article

A framework for risk-based assessment of urban floods in coastal cities

Author

Listed:
  • M. Dinesh Kumar

    (Institute for Resource Analysis and Policy (IRAP))

  • Shubham Tandon

    (United Nations Development Programme (UNDP))

  • Nitin Bassi

    (Institute for Resource Analysis and Policy (IRAP))

  • Pradipta Kumar Mohanty

    (United Nations Development Programme (UNDP))

  • Saurabh Kumar

    (Institute for Resource Analysis and Policy (IRAP))

  • Manish Mohandas

    (United Nations Development Programme (UNDP))

Abstract

Many coastal cities in developing countries are at the risk of flooding due to a progressive increase in the built-up areas and poor management of storm water. The flooding situation in coastal cities gets accentuated further due to climate-induced natural disasters such as cyclones and climate change-induced sea-level rise that adversely impact the city's natural drainage potential. This study developed a composite urban flood risk index consisting of three sub-indices and 20 key natural, physical, social, and economic influencing variables for a coastal city (i.e., Cuttack) in eastern India, the intensity of storm run-off being one among the many. The intensity–duration–frequency curve developed shows that the city can experience floods with a peak discharge of 1320 cubic metre per second every alternate year for a rainfall intensity of 2-h duration. The urban flood risk index computed for all the city wards shows that out of the 59 wards, only one ward has low flood risk (index value

Suggested Citation

  • M. Dinesh Kumar & Shubham Tandon & Nitin Bassi & Pradipta Kumar Mohanty & Saurabh Kumar & Manish Mohandas, 2022. "A framework for risk-based assessment of urban floods in coastal cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2035-2057, February.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05024-w
    DOI: 10.1007/s11069-021-05024-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05024-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05024-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Saxena & R. Purvaja & G. Mary Divya Suganya & R. Ramesh, 2013. "Coastal hazard mapping in the Cuddalore region, South India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1519-1536, April.
    2. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    3. N. Sudha Rani & A. Satyanarayana & Prasad Bhaskaran, 2015. "Coastal vulnerability assessment studies over India: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 405-428, May.
    4. Archana Patankar, 2015. "The Exposure, Vulnerability, and Ability to Respond of Poor Households to Recurrent Floods in Mumbai," Working Papers id:7863, eSocialSciences.
    5. Patankar,Archana Mahesh, 2015. "The exposure, vulnerability, and ability to respond of poor households to recurrent floods in Mumbai," Policy Research Working Paper Series 7481, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arna Nishita Nithila & Paromita Shome & Ishrat Islam, 2022. "Waterlogging induced loss and damage assessment of urban households in the monsoon period: a case study of Dhaka, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1565-1597, February.
    2. Germán Caruso & Inés Marcos & Ilan Noy, 2024. "Climate Changes Affect Human Capital," Economics of Disasters and Climate Change, Springer, vol. 8(1), pages 157-196, March.
    3. Heidi Tuhkanen & Michael Boyland & Guoyi Han & Anjalee Patel & Karlee Johnson & Arno Rosemarin & Ladylyn Lim Mangada, 2018. "A Typology Framework for Trade-Offs in Development and Disaster Risk Reduction: A Case Study of Typhoon Haiyan Recovery in Tacloban, Philippines," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    4. S. Nazrul Islam & John Winkel, 2017. "Climate Change and Social Inequality," Working Papers 152, United Nations, Department of Economics and Social Affairs.
    5. Patankar, Archana, 2019. "Impacts of Natural Disasters on Households and Small Businesses in India," ADB Economics Working Paper Series 603, Asian Development Bank.
    6. Angeliki Peponi & Paulo Morgado & Jorge Trindade, 2019. "Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
    7. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    8. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    9. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    10. Mehryar, Sara & Sasson, Idan & Surminski, Swenja, 2022. "Supporting urban adaptation to climate change: what role can resilience measurement tools play?," LSE Research Online Documents on Economics 113367, London School of Economics and Political Science, LSE Library.
    11. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    12. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    13. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    14. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    15. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    16. Visbeck, Martin & Kronfeld-Goharani, Ulrike & Neumann, Barbara & Rickels, Wilfried & Schmidt, Jörn & van Doorn, Erik & Matz-Lück, Nele & Ott, Konrad & Quaas, Martin F., 2014. "Securing blue wealth: The need for a special sustainable development goal for the ocean and coasts," Marine Policy, Elsevier, vol. 48(C), pages 184-191.
    17. Castells-Quintana, David & del Pilar Lopez-Uribe, Maria & McDermott, Thomas K.J., 2018. "A review of adaptation to climate change through a development economics lens," Working Papers 309605, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    18. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    19. Komali Kantamaneni & Sigamani Panneer & N.N.V. Sudha Rani & Udhayakumar Palaniswamy & Lekha D. Bhat & Carlos Jimenez-Bescos & Louis Rice, 2022. "Impact of Coastal Disasters on Women in Urban Slums: A New Index," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    20. Dasgupta, Susmita & Kamal, Farhana Akhter & Khan, Zahirul Huque & Choudhury, Sharifuzzaman & Nishat, Ainun, 2014. "River salinity and climate change : evidence from coastal Bangladesh," Policy Research Working Paper Series 6817, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05024-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.