IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i2d10.1007_s11069-021-04973-6.html
   My bibliography  Save this article

MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms

Author

Listed:
  • Polash Banerjee

    (Sikkim Manipal University)

Abstract

Wildfires in limited extent and intensity can be a boon for the forest ecosystem. However, recent episodes of wildfires of 2019 in Australia and Brazil are sad reminders of their heavy ecological and economical costs. Understanding the role of environmental factors in the likelihood of wildfires in a spatial context would be instrumental in mitigating it. In this study, 15 environmental features encompassing meteorological, topographical, ecological, in situ and anthropogenic factors have been considered for preparing the wildfire likelihood map of Sikkim Himalaya. A comparative study on the efficiency of machine learning methods like Generalized Linear Model, Support Vector Machine, Random Forest (RF) and Gradient Boosting Model (GBM) has been performed to identify the best performing algorithm in wildfire prediction. The study indicates that all the machine learning methods are good at predicting wildfires. However, RF has outperformed, followed by GBM in the prediction. Also, environmental features like average temperature, average wind speed, proximity to roadways and tree cover percentage are the most important determinants of wildfires in Sikkim Himalaya. This study can be considered as a decision support tool for preparedness, efficient resource allocation and sensitization of people towards mitigation of wildfires in Sikkim.

Suggested Citation

  • Polash Banerjee, 2022. "MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 899-935, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04973-6
    DOI: 10.1007/s11069-021-04973-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04973-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04973-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2018. "Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps," Energies, MDPI, vol. 11(3), pages 1-41, February.
    2. Mario Mhawej & Ghaleb Faour & Jocelyne Adjizian-Gerard, 2015. "Wildfire Likelihood’s Elements: A Literature Review," Challenges, MDPI, vol. 6(2), pages 1-12, December.
    3. Lara Vilar & Israel Gómez & Javier Martínez-Vega & Pilar Echavarría & David Riaño & M Pilar Martín, 2016. "Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    4. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    5. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    6. Keane, Robert E. & Karau, Eva, 2010. "Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models," Ecological Modelling, Elsevier, vol. 221(8), pages 1162-1172.
    7. Hassan Abedi Gheshlaghi & Bakhtiar Feizizadeh & Thomas Blaschke, 2020. "GIS-based forest fire risk mapping using the analytical network process and fuzzy logic," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(3), pages 481-499, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghafar Salavati & Ebrahim Saniei & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    2. Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    5. Abdulwaheed Tella & Abdul-Lateef Balogun, 2020. "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2277-2306, December.
    6. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    7. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    8. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    9. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    11. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    12. A. Kay & R. Jones, 2012. "Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency," Climatic Change, Springer, vol. 114(2), pages 211-230, September.
    13. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    15. baptiste perrissin fabert & Etienne Espagne & Antonin Pottier & Franck Nadaus, 2012. "Disentangling the Stern/Nordhaus controversy. Why and how do beliefs and modelling choices matter?," EcoMod2012 4270, EcoMod.
    16. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    17. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    18. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    19. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    20. Johannes Emmerling, 2018. "Sharing Of Climate Risks Across World Regions," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04973-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.