IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i3d10.1007_s11069-020-04278-0.html
   My bibliography  Save this article

A new agricultural drought index considering the irrigation water demand and water supply availability

Author

Listed:
  • Zikang Xing

    (Hohai University
    Hohai University)

  • Miaomiao Ma

    (China Institute of Water Resources and Hydropower Research)

  • Yongqiang Wei

    (Hunan Institute of Water Resources and Hydropower Research)

  • Xuejun Zhang

    (China Institute of Water Resources and Hydropower Research)

  • Zhongbo Yu

    (Hohai University
    Hohai University)

  • Peng Yi

    (Hohai University
    Hohai University)

Abstract

Agricultural drought has a tremendous impact on crop yields and economic development under the context of global climate change. As an essential component of water balance in irrigated areas, artificial irrigation, which is not widely incorporated into agricultural drought indices in previous studies. Therefore, an irrigation water deficit index (IWDI) based on the estimation of irrigation water demand and supply is proposed. The performance of the new index was compared with the Soil Moisture Anomaly Percentage Index (SMAPI) over the upstream of the Zi River basin (UZRB). The results indicated the IWDI is highly correlated with precipitation, runoff, and potential evapotranspiration, combined with a more comprehensive moisture condition than the previous agricultural drought index. Due to the consideration of crop growth process and farmland spatial distribution, the proposed index showed a significant advantage in stressing drought conditions of agricultural concentration area and eliminating the impact of invalid soil moisture drought of non-growing seasons. Furthermore, the drought condition identified by the new index presented a good agreement with the historical drought event that occurred in 2013.7–8, which accurately reproduced the soil moisture variation and vegetation growth dynamics.

Suggested Citation

  • Zikang Xing & Miaomiao Ma & Yongqiang Wei & Xuejun Zhang & Zhongbo Yu & Peng Yi, 2020. "A new agricultural drought index considering the irrigation water demand and water supply availability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2409-2429, December.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04278-0
    DOI: 10.1007/s11069-020-04278-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04278-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04278-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhongyi Sun & JiQuan Zhang & DengHua Yan & Lan Wu & Enliang Guo, 2015. "The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 23-40, August.
    2. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiang-Jen Wu & Jie-Sen Mai & Yi-Hong Lin & Keh-Chia Yeh, 2022. "Modeling Probabilistic-Based Reliability Analysis for Irrigation Water Supply Due to Uncertainties in Hydrological and Irrigation Factors," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    2. Mengya Hua & Yuyan Zhou & Cailian Hao & Qiang Yan, 2023. "Analyzing the Drivers of Agricultural Irrigation Water Demand in Water-Scarce Areas: A Comparative Study of Two Regions with Different Levels of Irrigated Agricultural Development," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    3. Yabo Zhao & Weiwei Zhang & Cansong Li & Shifa Ma & Xiwen Zhang & Haiyan Jiang, 2022. "Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020," Land, MDPI, vol. 11(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    3. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    4. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    5. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    6. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    7. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    10. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Feng-Yu Huang & Cheng-Xia Wang & Yi-Ping Zhang & Qiang-Qiang Cheng & Zhe Wang, 2021. "Horizontal Distribution of Cadmium in Urban Constructed Wetlands: A Case Study," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    11. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    13. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Fahad Rasheed & Adnan Gondal & Kamziah Abdul Kudus & Zikria Zafar & Muhammad Farrakh Nawaz & Waseem Razzaq Khan & Muhammad Abdullah & Faridah Hanum Ibrahim & Claire Depardieu & Ahmad Mustapha Mohamad , 2021. "Effects of Soil Water Deficit on Three Tree Species of the Arid Environment: Variations in Growth, Physiology, and Antioxidant Enzyme Activities," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    15. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    16. Shahzad, Umer & Schneider, Nicolas & Ben Jebli, Mehdi, 2021. "How coal and geothermal energies interact with industrial development and carbon emissions? An autoregressive distributed lags approach to the Philippines," Resources Policy, Elsevier, vol. 74(C).
    17. Jinmeng Zhang & Shiqiao Zhang & Min Cheng & Hong Jiang & Xiuying Zhang & Changhui Peng & Xuehe Lu & Minxia Zhang & Jiaxin Jin, 2018. "Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
    18. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    19. Jianjian He & Pengyan Zhang, 2018. "Evaluating the Coordination of Industrial-Economic Development Based on Anthropogenic Carbon Emissions in Henan Province, China," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    20. Jakub Jurasz & Jerzy Mikulik, 2017. "A strategy for the photovoltaic-powered pumped storage hydroelectricity," Energy & Environment, , vol. 28(5-6), pages 544-563, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04278-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.